Show simple item record

dc.contributor.authorTrevathan-Tackett, SM
dc.contributor.authorKepfer-Rojas, S
dc.contributor.authorEngelen, AH
dc.contributor.authorYork, PH
dc.contributor.authorOla, A
dc.contributor.authorLi, J
dc.contributor.authorKelleway, JJ
dc.contributor.authorJinks, KI
dc.contributor.authorJackson, EL
dc.contributor.authorAdame, MF
dc.contributor.authorPendall, E
dc.contributor.authorLovelock, CE
dc.contributor.authorConnolly, RM
dc.contributor.authorWatson, A
dc.contributor.authoret al.
dc.date.accessioned2023-10-27T02:34:54Z
dc.date.available2023-10-27T02:34:54Z
dc.date.issued2021
dc.identifier.issn0048-9697
dc.identifier.doi10.1016/j.scitotenv.2021.146819
dc.identifier.urihttp://hdl.handle.net/10072/403887
dc.description.abstractWetland ecosystems are critical to the regulation of the global carbon cycle, and there is a high demand for data to improve carbon sequestration and emission models and predictions. Decomposition of plant litter is an important component of ecosystem carbon cycling, yet a lack of knowledge on decay rates in wetlands is an impediment to predicting carbon preservation. Here, we aim to fill this knowledge gap by quantifying the decomposition of standardised green and rooibos tea litter over one year within freshwater and coastal wetland soils across four climates in Australia. We also captured changes in the prokaryotic members of the tea-associated microbiome during this process. Ecosystem type drove differences in tea decay rates and prokaryotic microbiome community composition. Decomposition rates were up to 2-fold higher in mangrove and seagrass soils compared to freshwater wetlands and tidal marshes, in part due to greater leaching-related mass loss. For tidal marshes and freshwater wetlands, the warmer climates had 7–16% less mass remaining compared to temperate climates after a year of decomposition. The prokaryotic microbiome community composition was significantly different between substrate types and sampling times within and across ecosystem types. Microbial indicator analyses suggested putative metabolic pathways common across ecosystems were used to breakdown the tea litter, including increased presence of putative methylotrophs and sulphur oxidisers linked to the introduction of oxygen by root in-growth over the incubation period. Structural equation modelling analyses further highlighted the importance of incubation time on tea decomposition and prokaryotic microbiome community succession, particularly for rooibos tea that experienced a greater proportion of mass loss between three and twelve months compared to green tea. These results provide insights into ecosystem-level attributes that affect both the abiotic and biotic controls of belowground wetland carbon turnover at a continental scale, while also highlighting new decay dynamics for tea litter decomposing under longer incubations.
dc.description.peerreviewedYes
dc.languageen
dc.publisherElsevier BV
dc.relation.ispartofpagefrom146819
dc.relation.ispartofjournalScience of the Total Environment
dc.relation.ispartofvolume782
dc.subject.fieldofresearchMicrobiology
dc.subject.fieldofresearchEcological applications
dc.subject.fieldofresearchcode3107
dc.subject.fieldofresearchcode4102
dc.titleEcosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationTrevathan-Tackett, SM; Kepfer-Rojas, S; Engelen, AH; York, PH; Ola, A; Li, J; Kelleway, JJ; Jinks, KI; Jackson, EL; Adame, MF; Pendall, E; Lovelock, CE; Connolly, RM; Watson, A; et al., Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale, Science of the Total Environment, 2021, 782, pp. 146819-146819
dcterms.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.date.updated2021-04-21T23:27:10Z
dc.description.versionAccepted Manuscript (AM)
gro.rights.copyright© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
gro.hasfulltextFull Text
gro.griffith.authorAdame Vivanco, Fernanda
gro.griffith.authorConnolly, Rod M.


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record