• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Exergo-economic analysis and multi-objective multi-verse optimization of a solar/biomass-based trigeneration system using externally-fired gas turbine, organic Rankine cycle and absorption refrigeration cycle

    Author(s)
    Nazari, N
    Mousavi, S
    Mirjalili, S
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    In the present work, an innovative configuration is proposed based on solar pre-heating concept and biomass direct-combustion for combined production of electricity, hot water and cooling load. The studied system consists of an externally fired gas turbine, a trans-critical organic Rankine cycle, and a Li-Br/H O absorption refrigeration cycle. The proposed system is thoroughly analyzed from the energy, exergy, and exergo-economic viewpoint. The results of the exergo-economic analysis demonstrate that the energy and exergy efficiencies of the reference case are 55.56% and 20.38% and the product cost rate is 26.4 $/h. Comparing ...
    View more >
    In the present work, an innovative configuration is proposed based on solar pre-heating concept and biomass direct-combustion for combined production of electricity, hot water and cooling load. The studied system consists of an externally fired gas turbine, a trans-critical organic Rankine cycle, and a Li-Br/H O absorption refrigeration cycle. The proposed system is thoroughly analyzed from the energy, exergy, and exergo-economic viewpoint. The results of the exergo-economic analysis demonstrate that the energy and exergy efficiencies of the reference case are 55.56% and 20.38% and the product cost rate is 26.4 $/h. Comparing the thermodynamic results to the literature, it is proved that the proposed system generates a considerably higher amount of power, heating, and cooling load which results in an improvement of energy efficiency by about 10%. In further, the main design parameters of each cycle are parametrically assessed to gain a comprehensive understanding of the system behavior. Finally, a new multi-objective optimization algorithm called multi-objective multi-verse optimizer (MOMVO) is employed to maximize exergy efficiency and minimize the product cost rate of the system. Compared to the base case, TOPSIS implementation revealed that the optimal final solution of the Pareto-frontier found by the MOMVO has about 9% higher second law efficiency while the product cost rate is decreased by around 6%. This result proved the better performance of the MOMVO compared to other conventional evolutionary-based multi-objective optimzation algorithms.
    View less >
    Journal Title
    Applied Thermal Engineering
    Volume
    191
    DOI
    https://doi.org/10.1016/j.applthermaleng.2021.116889
    Subject
    Mechanical engineering
    Other engineering
    Publication URI
    http://hdl.handle.net/10072/403972
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander