• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Polyoxometalates (POMs): From electroactive clusters to energy materials

    Thumbnail
    View/Open
    Ostrikov483804-Accepted.pdf (4.888Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Horn, MR
    Singh, A
    Alomari, S
    Goberna-Ferrón, S
    Benages-Vilau, R
    Chodankar, N
    Motta, N
    Ostrikov, K
    Macleod, J
    Sonar, P
    Gomez-Romero, P
    Dubal, D
    Griffith University Author(s)
    Sonar, Prashant
    Ostrikov, Ken
    Pannu, Amandeep Singh S.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Polyoxometalates (POMs) represent a class of nanomaterials, which hold enormous promise for a range of energy-related applications. Their promise is owing to their “special” structure that gives POMs a truly unique ability to control redox reactions in energy conversion and storage. One such amazing capability is their large number of redox active sites that arises from the complex three-dimensional cluster of metal-oxide ions linked together by oxygen atoms. Here, a critical review on how POMs emerged from being molecular clusters for fundamental studies, to next-generation materials for energy applications is provided. We ...
    View more >
    Polyoxometalates (POMs) represent a class of nanomaterials, which hold enormous promise for a range of energy-related applications. Their promise is owing to their “special” structure that gives POMs a truly unique ability to control redox reactions in energy conversion and storage. One such amazing capability is their large number of redox active sites that arises from the complex three-dimensional cluster of metal-oxide ions linked together by oxygen atoms. Here, a critical review on how POMs emerged from being molecular clusters for fundamental studies, to next-generation materials for energy applications is provided. We highlight how exploiting the versatility and activity of these molecules can lead to improved performance in energy devices such as supercapacitors and batteries, and in energy catalyst applications. The potential of POMs across numerous fields is systematically outlined by investigating structure–property–performance relationships and the determinant factors for energy systems. Finally, the challenges and opportunities for this class of materials with respect to addressing our pressing energy-related concerns are identified.
    View less >
    Journal Title
    Energy and Environmental Science
    Volume
    14
    Issue
    4
    DOI
    https://doi.org/10.1039/d0ee03407j
    Copyright Statement
    © 2021 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Environmental nanotechnology and nanometrology
    Publication URI
    http://hdl.handle.net/10072/404188
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander