Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion
Author(s)
Xie, Lei
Zhou, Shan
Liu, Jinrong
Qiu, Beilei
Liu, Tianyi
Liang, Qirui
Zheng, Xiaozhong
Li, Ben
Zeng, Jie
Yan, Miao
He, Yanjun
Zhang, Xin
Zeng, Hui
Zhao, Dongyuan
et al.
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
The capture of sustainable energy from a salinity gradient, in particular, using renewable biomass-derived functional materials, has attracted significant attention. In order to convert osmotic energy to electricity, many membrane materials with nanofluidic channels have been developed. However, the high cost, complex preparation process, and low output power density still restrict the practical application of traditional membranes. Herein, we report the synthesis of highly flexible and mechanically robust nanofiber-arrays-based carbonaceous ordered mesoporous nanowires (CMWs) through a simple and straightforward soft-templating ...
View more >The capture of sustainable energy from a salinity gradient, in particular, using renewable biomass-derived functional materials, has attracted significant attention. In order to convert osmotic energy to electricity, many membrane materials with nanofluidic channels have been developed. However, the high cost, complex preparation process, and low output power density still restrict the practical application of traditional membranes. Herein, we report the synthesis of highly flexible and mechanically robust nanofiber-arrays-based carbonaceous ordered mesoporous nanowires (CMWs) through a simple and straightforward soft-templating hydrothermal carbonization approach. This sequential superassembly strategy shows a high yield and great versatility in controlling the dimensions of CMWs with the aspect ratio changes from about 3 to 39. Furthermore, these CMWs can be used as novel building blocks to construct functional hybrid membranes on macroporous alumina. This nanofluidic membrane with asymmetric geometry and charge polarity exhibits low resistance and high-performance energy conversion. This work opens a solution-based route for the one-pot preparation of CMWs and functional heterostructure membranes for various applications.
View less >
View more >The capture of sustainable energy from a salinity gradient, in particular, using renewable biomass-derived functional materials, has attracted significant attention. In order to convert osmotic energy to electricity, many membrane materials with nanofluidic channels have been developed. However, the high cost, complex preparation process, and low output power density still restrict the practical application of traditional membranes. Herein, we report the synthesis of highly flexible and mechanically robust nanofiber-arrays-based carbonaceous ordered mesoporous nanowires (CMWs) through a simple and straightforward soft-templating hydrothermal carbonization approach. This sequential superassembly strategy shows a high yield and great versatility in controlling the dimensions of CMWs with the aspect ratio changes from about 3 to 39. Furthermore, these CMWs can be used as novel building blocks to construct functional hybrid membranes on macroporous alumina. This nanofluidic membrane with asymmetric geometry and charge polarity exhibits low resistance and high-performance energy conversion. This work opens a solution-based route for the one-pot preparation of CMWs and functional heterostructure membranes for various applications.
View less >
Journal Title
Journal of the American Chemical Society
Note
This publication has been entered as an advanced online version in Griffith Research Online.
Subject
Chemical sciences