• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development of Cluster-Based Energy Management Scheme for Residential Usages in the Smart Grid Community

    View/Open
    Hossain484319-Published.pdf (8.066Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Rashid, Md Mamun Ur
    Granelli, Fabrizio
    Hossain, Md Alamgir
    Alam, Md Shafiul
    Al-Ismail, Fahad Saleh
    Shah, Rakibuzzaman
    Griffith University Author(s)
    Hossain, Md. Alamgir
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Several efforts have been taken to promote clean energy towards a sustainable and green economy. Existing sources of electricity present some complications concerning consumers, utility owners, and the environment. Utility operators encourage household applicants to employ residential energy management (REM) systems. Renewable energy sources (RESs), energy storage systems (ESS), and optimal energy allocation strategies are used to resolve these difficulties. In this paper, the development of a cluster-based energy management scheme for residential consumers of a smart grid community is proposed to reduce energy use and ...
    View more >
    Several efforts have been taken to promote clean energy towards a sustainable and green economy. Existing sources of electricity present some complications concerning consumers, utility owners, and the environment. Utility operators encourage household applicants to employ residential energy management (REM) systems. Renewable energy sources (RESs), energy storage systems (ESS), and optimal energy allocation strategies are used to resolve these difficulties. In this paper, the development of a cluster-based energy management scheme for residential consumers of a smart grid community is proposed to reduce energy use and monetary cost. Normally, residential consumers deal with household appliances with various operating time slots depending on consumer preferences. A simulator is designed and developed using C++ software to resolve the residential consumer’s REM problem. The benefits of the RESs, ESS, and optimal energy allocation techniques are analyzed by taking in account three different scenarios. Extensive case studies are carried out to validate the effectiveness of the proposed cluster-based energy management scheme. It is demonstrated that the proposed method can save energy and costs up to 45% and 56% compared to the existing methods.
    View less >
    Journal Title
    Electronics
    Volume
    9
    Issue
    9
    DOI
    https://doi.org/10.3390/electronics9091462
    Copyright Statement
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Electronics, sensors and digital hardware
    Science & Technology
    Physical Sciences
    Computer Science, Information Systems
    Publication URI
    http://hdl.handle.net/10072/404245
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander