• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Simulation of the effects of forest harvesting under changing climate to inform long-term sustainable forest management using a biogeochemical model

    Author(s)
    Valipour, M
    Johnson, CE
    Battles, JJ
    Campbell, JL
    Fahey, TJ
    Fakhraei, H
    Driscoll, CT
    Griffith University Author(s)
    Johnson, Chris E.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Process ecosystem models are useful tools to provide insight on complex, dynamic ecological systems, and their response to disturbances. The biogeochemical model PnET-BGC was modified and tested using field observations from an experimentally whole-tree harvested northern hardwood watershed (W5) at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. In this study, the confirmed model was used as a heuristic tool to investigate long-term changes in hydrology, biomass accumulation, and soil solution and stream water chemistry for three different watershed cutting intensities (40%, 60%, 80%) and three rotation ...
    View more >
    Process ecosystem models are useful tools to provide insight on complex, dynamic ecological systems, and their response to disturbances. The biogeochemical model PnET-BGC was modified and tested using field observations from an experimentally whole-tree harvested northern hardwood watershed (W5) at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. In this study, the confirmed model was used as a heuristic tool to investigate long-term changes in hydrology, biomass accumulation, and soil solution and stream water chemistry for three different watershed cutting intensities (40%, 60%, 80%) and three rotation lengths (30, 60, 90 years) under both constant (current climate) and changing (MIROC5-RCP4.5) future climate scenarios and atmospheric CO2 through the year 2200. For the no future cutting scenario, total ecosystem stored carbon (i.e., sum of aboveground biomass, woody debris and soil) reached a maximum value of 207 t C ha−1 under constant climate but increased to 452 t C ha−1 under changing climate in 2200 due to a CO2 fertilization effect. Harvesting of trees decreased total ecosystem stored carbon between 7 and 36% for constant climate and 7–60% under changing climate, respectively, with greater reductions for shorter logging rotation lengths and greater watershed cutting intensities. Harvesting under climate change resulted in noticeable losses of soil organic matter (12–56%) coinciding with loss of soil nutrients primarily due to higher rates of soil mineralization associated with increases in temperature, compared with constant climate conditions (3–22%). Cumulative stream leaching of nitrate under climate change (181–513 kg N ha−1) exceeded constant climate values (139–391 kg N ha−1) for the various cutting regimes. Under both climate conditions the model projected greater sensitivity to varying the length of cutting period than cutting intensities. Hypothetical model simulations highlight future challenges in maintaining long-term productivity of managed forests under changing climate due to a potential for a deterioration of soil fertility.
    View less >
    Journal Title
    Science of the Total Environment
    Volume
    767
    DOI
    https://doi.org/10.1016/j.scitotenv.2020.144881
    Subject
    Environmental sciences
    Agriculture, land and farm management
    Climate change
    Harvesting
    Hubbard Brook Experimental Forest
    MIROC5-RCP4.5
    Managed forests
    Publication URI
    http://hdl.handle.net/10072/404281
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander