JUDO: Just-in-time rumour detection in streaming social platforms
View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Nguyen, Thanh Toan
Nguyen, Thanh Tam
Nguyen, Thanh Thi
Vo, Bay
Jo, Jun
Nguyen, Quoc Viet Hung
Year published
2021
Metadata
Show full item recordAbstract
Web platforms, especially social media, are facing a new and ever-evolving cyber threat operating at the information level. Their open nature allows a high velocity flow of rumours that emerge unexpectedly and spread quickly. While rumour detection has attracted many theoretical and practice studies, the timing of the detection is often neglected or not properly considered. Rumours often cause irreversible damage worldwide before being successfully detected. To address this, we approach early rumour detection from a streaming perspective. We present a just-in-time rumour detection framework that is built on top of the ...
View more >Web platforms, especially social media, are facing a new and ever-evolving cyber threat operating at the information level. Their open nature allows a high velocity flow of rumours that emerge unexpectedly and spread quickly. While rumour detection has attracted many theoretical and practice studies, the timing of the detection is often neglected or not properly considered. Rumours often cause irreversible damage worldwide before being successfully detected. To address this, we approach early rumour detection from a streaming perspective. We present a just-in-time rumour detection framework that is built on top of the continuous scoring of rumour-related signals. To overcome the trade-off between timeliness and the coefficient of detection, our model treats social graphs as a data stream and computes the anomaly score of potential rumours at both the element-level and subgraph-level. This multi-level approach not only captures the propagation structure of rumours but also focuses on abnormal elements that are responsible for bootstrapping or amplifying the rumours (the ‘explore vs exploit’ effect). With extensive evaluations on our published benchmark, our model identifies rumours earlier than the baselines while achieving an even better detection coefficient.
View less >
View more >Web platforms, especially social media, are facing a new and ever-evolving cyber threat operating at the information level. Their open nature allows a high velocity flow of rumours that emerge unexpectedly and spread quickly. While rumour detection has attracted many theoretical and practice studies, the timing of the detection is often neglected or not properly considered. Rumours often cause irreversible damage worldwide before being successfully detected. To address this, we approach early rumour detection from a streaming perspective. We present a just-in-time rumour detection framework that is built on top of the continuous scoring of rumour-related signals. To overcome the trade-off between timeliness and the coefficient of detection, our model treats social graphs as a data stream and computes the anomaly score of potential rumours at both the element-level and subgraph-level. This multi-level approach not only captures the propagation structure of rumours but also focuses on abnormal elements that are responsible for bootstrapping or amplifying the rumours (the ‘explore vs exploit’ effect). With extensive evaluations on our published benchmark, our model identifies rumours earlier than the baselines while achieving an even better detection coefficient.
View less >
Journal Title
Information Sciences
Volume
570
Copyright Statement
© 2021, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Artificial intelligence
Mathematical sciences
Engineering