• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Influence of Degree of Saturation (DOS) on Dynamic Behavior of Unbound Granular Materials

    Thumbnail
    View/Open
    Sun462621-Published.pdf (2.178Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Sun, Junyu
    Oh, Erwin
    Ong, Dominic Ek-Leong
    Griffith University Author(s)
    Ong, Dominic E.L.
    Oh, Erwin
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    The extensive application of natural unbound granular materials (UGMs) motivates studies into the mechanical properties of alternatives such as processed crushed rocks employed commonly as base or subbase layers. The rutting and settlement generated in base and subbase layers is widely restricted in many specifications and standards. In this research, the dynamic behavior including the resilient modulus (Mr) and the plastic strain (εεp) of the crushed rocks collected from Queensland in Australia will be tested by a series of repeated load triaxial test (RLT) tests to investigate the behavior of UGMs under the fluctuation of ...
    View more >
    The extensive application of natural unbound granular materials (UGMs) motivates studies into the mechanical properties of alternatives such as processed crushed rocks employed commonly as base or subbase layers. The rutting and settlement generated in base and subbase layers is widely restricted in many specifications and standards. In this research, the dynamic behavior including the resilient modulus (Mr) and the plastic strain (εεp) of the crushed rocks collected from Queensland in Australia will be tested by a series of repeated load triaxial test (RLT) tests to investigate the behavior of UGMs under the fluctuation of the degree of saturation (DOS) (59%–100%). In particular, the RLT specimens were prepared in the laboratory through proper gradation under optimum moisture content (OMC) and 100% standard proctor maximum dry unit weight. Results from the RLT tests showed that UGM specimens soaked at higher DOS generated lower resilient modulus and weaker resistance to heavy traffic volumes with significant accumulation of plastic strain. The Mr and εεp of the tested aggregates under different cyclic deviator stresses of 425 kPa and 625 kPa approximately linearly decreased and approximately linearly increased as the DOS increased with a certain number of cycles up to 50,000, respectively
    View less >
    Journal Title
    Geosciences
    Volume
    11
    Issue
    2
    DOI
    https://doi.org/10.3390/geosciences11020089
    Copyright Statement
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Geology
    Environmental engineering
    Geomatic engineering
    Science & Technology
    Physical Sciences
    Geosciences, Multidisciplinary
    unbound granular materials (UGMs)
    Publication URI
    http://hdl.handle.net/10072/404688
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander