• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modeling effects of disturbance across life history strategies of stream fishes

    Author(s)
    Fournier, RJ
    Bond, NR
    Magoulick, DD
    Griffith University Author(s)
    Bond, Nick R.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    A central goal of population ecology is to establish linkages between life history strategy, disturbance, and population dynamics. Globally, disturbance events such as drought and invasive species have dramatically impacted stream fish populations and contributed to sharp declines in freshwater biodiversity. Here, we used RAMAS Metapop to construct stage-based demographic metapopulation models for stream fishes with periodic, opportunistic, and equilibrium life history strategies and assessed their responses to the effects of invasion (reduced carrying capacity), extended drought (reduced survival and fecundity), and the ...
    View more >
    A central goal of population ecology is to establish linkages between life history strategy, disturbance, and population dynamics. Globally, disturbance events such as drought and invasive species have dramatically impacted stream fish populations and contributed to sharp declines in freshwater biodiversity. Here, we used RAMAS Metapop to construct stage-based demographic metapopulation models for stream fishes with periodic, opportunistic, and equilibrium life history strategies and assessed their responses to the effects of invasion (reduced carrying capacity), extended drought (reduced survival and fecundity), and the combined effects of both disturbances. Our models indicated that populations respond differentially to disturbance based on life history strategy. Equilibrium strategists were best able to deal with simulated invasion. Periodic strategists did well under lower levels of drought, whereas opportunistic strategists outperformed other life histories under extreme seasonal drought. When we modeled additive effects scenarios, these disturbances interacted synergistically, dramatically increasing terminal extinction risk for all three life history strategies. Modeling exercises that examine broad life history categories can help to answer fundamental ecological questions about the relationship between disturbance resilience and life history, as well as help managers to develop generalized conservation strategies when species-specific data are lacking. Our results indicate that life history strategy is a fundamental determinant of population trajectories, and that disturbances can interact synergistically to dramatically impact extinction outcomes.
    View less >
    Journal Title
    Oecologia
    DOI
    https://doi.org/10.1007/s00442-021-04941-8
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Ecology
    Publication URI
    http://hdl.handle.net/10072/404966
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander