• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Adaptive two-dimensional embedded image clustering

    Author(s)
    Li, Z
    Yao, L
    Wang, S
    Kanhere, S
    Li, X
    Zhang, H
    Griffith University Author(s)
    Wang, Sen
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    With the rapid development of mobile devices, people are generating huge volumes of images data every day for sharing on social media, which draws much research attention to understanding the contents of images. Image clustering plays an important role in image understanding systems. Often, most of the existing image clustering algorithms flatten digital images that are originally represented by matrices into 1D vectors as the image representation for the subsequent learning. The drawbacks of vector-based algorithms include limited consideration of spatial relationship between pixels and computational complexity, both of ...
    View more >
    With the rapid development of mobile devices, people are generating huge volumes of images data every day for sharing on social media, which draws much research attention to understanding the contents of images. Image clustering plays an important role in image understanding systems. Often, most of the existing image clustering algorithms flatten digital images that are originally represented by matrices into 1D vectors as the image representation for the subsequent learning. The drawbacks of vector-based algorithms include limited consideration of spatial relationship between pixels and computational complexity, both of which blame to the simple vectorized representation. To overcome the drawbacks, we propose a novel image clustering framework that can work directly on matrices of images instead of flattened vectors. Specifically, the proposed algorithm simultaneously learn the clustering results and preserve the original correlation information within the image matrix. To solve the challenging objective function, we propose a fast iterative solution. Extensive experiments have been conducted on various benchmark datasets. The experimental results confirm the superiority of the proposed algorithm.
    View less >
    Conference Title
    AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
    Volume
    34
    Issue
    4
    DOI
    https://doi.org/10.1609/aaai.v34i04.5914
    Subject
    Nanotechnology
    Publication URI
    http://hdl.handle.net/10072/405065
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander