Transient Solubility Gradients Mediate Oversaturation during Solvent Exchange
View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Tan, Beng Hau
Ohl, Claus-Dieter
An, Hongjie
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Solvent exchange facilitates high-density nucleation of sessile nanodroplets or nanobubbles by successively wetting a surface with two solvents of contrasting solubility with respect to a target species. Yet the key physical mechanisms underlying its efficacy have yet to be theoretically explained. We develop a minimal model for solvent exchange, for the prototypical example of water and ethanol as the solvents and nitrogen as the target species. Our calculations show that solvent exchange is mediated by transient solubility gradients that dominate over the intrinsic concentration gradient of nitrogen in the incipient moments ...
View more >Solvent exchange facilitates high-density nucleation of sessile nanodroplets or nanobubbles by successively wetting a surface with two solvents of contrasting solubility with respect to a target species. Yet the key physical mechanisms underlying its efficacy have yet to be theoretically explained. We develop a minimal model for solvent exchange, for the prototypical example of water and ethanol as the solvents and nitrogen as the target species. Our calculations show that solvent exchange is mediated by transient solubility gradients that dominate over the intrinsic concentration gradient of nitrogen in the incipient moments after exchange. Solubility gradients advect nitrogen toward the substrate during ethanol-water exchange but away from it in water-ethanol exchange, consistent with the directionality observed in experiments.
View less >
View more >Solvent exchange facilitates high-density nucleation of sessile nanodroplets or nanobubbles by successively wetting a surface with two solvents of contrasting solubility with respect to a target species. Yet the key physical mechanisms underlying its efficacy have yet to be theoretically explained. We develop a minimal model for solvent exchange, for the prototypical example of water and ethanol as the solvents and nitrogen as the target species. Our calculations show that solvent exchange is mediated by transient solubility gradients that dominate over the intrinsic concentration gradient of nitrogen in the incipient moments after exchange. Solubility gradients advect nitrogen toward the substrate during ethanol-water exchange but away from it in water-ethanol exchange, consistent with the directionality observed in experiments.
View less >
Journal Title
Physical Review Letters
Volume
126
Issue
23
Funder(s)
ARC
Grant identifier(s)
FT180100361
Copyright Statement
© 2021 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Condensed matter physics
Engineering