• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Microfluidic chip enables single-cell measurement for multidrug resistance in triple-negative breast cancer cells

    View/Open
    Lopez Ramirez497785-Published.pdf (1.228Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Parekh, K
    Noghabi, HS
    Lopez, JA
    Li, PCH
    Griffith University Author(s)
    Lopez Ramirez, Alejandro
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Aims: Triple-negative breast cancer patients are commonly treated with combination chemotherapy. Nonetheless, outcomes remain substandard with relapses being of a frequent occurrence. Among the several mechanisms that result in treatment failure, multidrug resistance, which is mediated by ATP-binding cassette proteins, is the most common. Regardless of the substantial studies conducted on the heterogeneity of cancer types, only a few assays can distinguish the variability in multidrug resistance activity between individual cells. We aim to develop a single-cell assay to study this. Methods: This experiment utilized a ...
    View more >
    Aims: Triple-negative breast cancer patients are commonly treated with combination chemotherapy. Nonetheless, outcomes remain substandard with relapses being of a frequent occurrence. Among the several mechanisms that result in treatment failure, multidrug resistance, which is mediated by ATP-binding cassette proteins, is the most common. Regardless of the substantial studies conducted on the heterogeneity of cancer types, only a few assays can distinguish the variability in multidrug resistance activity between individual cells. We aim to develop a single-cell assay to study this. Methods: This experiment utilized a microfluidic chip to measure the drug accumulation in single breast cancer cells in order to understand the inhibition of drug efflux properties. Results: Selection of single cells, loading of drugs, and fluorescence measurement for intracellular drug accumulation were all conducted on a microfluidic chip. As a result, measurements of the accumulation of chemotherapeutic drugs (e.g., daunorubicin and paclitaxel) in single cells in the presence and absence of cyclosporine A were conducted. Parameters such as initial drug accumulation, signal saturation time, and fold-increase of drug with and without the presence cyclosporine A were also tested. Conclusion: The results display that drug accumulation in a single-cell greatly enhanced over its same-cell control because of inhibition by cyclosporine A. Furthermore, this experiment may provide a platform for future liquid biopsy studies to characterize the multidrug resistance activity at a single-cell level.
    View less >
    Journal Title
    Cancer Drug Resistance
    Volume
    3
    Issue
    3
    DOI
    https://doi.org/10.20517/cdr.2019.77
    Copyright Statement
    © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
    Subject
    Biomedical engineering
    Oncology and carcinogenesis
    Publication URI
    http://hdl.handle.net/10072/405145
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander