• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Utilising polyphenylene oxide for high exposure solar UVA dosimetry

    Thumbnail
    View/Open
    72980_1.pdf (377.0Kb)
    Author(s)
    Turnbull, D.
    Schouten, P.
    Griffith University Author(s)
    Schouten, Peter W.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Researchers at the University of Southern Queensland have developed a personal UV dosimeter that can quantitatively assess high exposure solar UVA exposures. The chemical polyphenylene oxide has been previously reported on its ability to measure high UVB exposures. This current research has found that polyphenylene oxide, cast in thin film form, is responsive to both the UVA and UVB parts of the solar spectrum. Further to this, the UVB wavelengths were filtered out with the use of mylar. This combined system responded to the UVA wavelengths only and underwent a change in optical absorbance as a result of UVA exposure. ...
    View more >
    Researchers at the University of Southern Queensland have developed a personal UV dosimeter that can quantitatively assess high exposure solar UVA exposures. The chemical polyphenylene oxide has been previously reported on its ability to measure high UVB exposures. This current research has found that polyphenylene oxide, cast in thin film form, is responsive to both the UVA and UVB parts of the solar spectrum. Further to this, the UVB wavelengths were filtered out with the use of mylar. This combined system responded to the UVA wavelengths only and underwent a change in optical absorbance as a result of UVA exposure. Preliminary results indicate that this UVA dosimeter saturates steadily when exposed to sunlight and can measure exposures of more than 20 MJ/m2 of solar UVA radiation with an uncertainty level of no more than ᵥ.
    View less >
    Journal Title
    Atmospheric Chemistry and Physics
    Volume
    8
    DOI
    https://doi.org/10.5194/acp-8-2759-2008
    Copyright Statement
    © The Author(s) 2008. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this journal please refer to the journal's website or contact the authors.
    Subject
    Atmospheric Radiation
    Astronomical and Space Sciences
    Atmospheric Sciences
    Publication URI
    http://hdl.handle.net/10072/40519
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander