• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A novel RdRp-based colorimetric RT-LAMP assay for rapid and sensitive detection of SARS-CoV-2 in clinical and sewage samples from Pakistan

    Thumbnail
    View/Open
    Umer499297-Accepted.pdf (797.7Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Haque, Muhammad Farhan Ul
    Bukhari, Syeda Sadia
    Ejaz, Rabia
    Zaman, Faheem Uz
    Sreejith, Kamalalayam Rajan
    Rashid, Naeem
    Umer, Muhammad
    Shahzad, Naveed
    Griffith University Author(s)
    Umer, Muhammad
    Kamalalayam Rajan, Sreejith
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Novel corona virus SARS-CoV-2, causing coronavirus disease 2019 (COVID-19), has become a global health challenge particularly for developing countries like Pakistan where overcrowded cities, inadequate sanitation, little health awareness and poor socioeconomic conditions exist. The SARS-CoV-2 has been known to spread primarily through direct contact and respiratory droplets. However, detection of SARS-CoV-2 in stool and sewage, have raised the possibility of fecal-oral mode of transmission. Currently, quantitative reverse-transcriptase PCR (qRT-PCR) is the only method being used for SARS-CoV-2 detection, which requires ...
    View more >
    Novel corona virus SARS-CoV-2, causing coronavirus disease 2019 (COVID-19), has become a global health challenge particularly for developing countries like Pakistan where overcrowded cities, inadequate sanitation, little health awareness and poor socioeconomic conditions exist. The SARS-CoV-2 has been known to spread primarily through direct contact and respiratory droplets. However, detection of SARS-CoV-2 in stool and sewage, have raised the possibility of fecal-oral mode of transmission. Currently, quantitative reverse-transcriptase PCR (qRT-PCR) is the only method being used for SARS-CoV-2 detection, which requires expensive instrumentation, dedicated laboratory setup, highly skilled staff, and several hours to report results. Considering the high transmissibility and rapid spread, a robust, sensitive, specific and cheaper assay for rapid SARS-CoV-2 detection is highly needed. Herein, we report a novel colorimetric RT-LAMP assay for naked-eye detection of SARS-COV-2 in clinical as well as sewage samples. Our SARS-CoV-2 RdRp-based LAMP assay could successfully detect the virus RNA in 26/28 (93%) of RT-PCR positive COVID-19 clinical samples with 100% specificity (n = 7) within 20 min. We also tested the effect of various additives on the performance of LAMP assay and found that addition of 1 mg/ml bovine serum albumin (BSA) could increase the sensitivity of assay up to 101 copies of target sequence. Moreover, we also successfully applied this assay to detect SARS-CoV-2 in sewage waters collected from those areas of Lahore, a city of Punjab province of Pakistan, declared as virus hotspots by local government. Our optimized LAMP assay could provide a sensitive first tier strategy for SARS-CoV-2 screening and can potentially help diagnostic laboratories in better handling of high sample turnout during pandemic situation. By providing rapid naked-eye SARS-CoV-2 detection in sewage samples, this assay may support pandemic readiness and emergency response to any possible virus outbreaks in future.
    View less >
    Journal Title
    Virus Research
    DOI
    https://doi.org/10.1016/j.virusres.2021.198484
    Copyright Statement
    © 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Biological sciences
    Agricultural, veterinary and food sciences
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/405493
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander