Rapid and improved reconstitution of bacterial mechanosensitive ion channel proteins MscS and MscL into liposomes using a modified sucrose method
Author(s)
Battle, Andrew R
Petrov, Evgeny
Pal, Prithwish
Martinac, Boris
Griffith University Author(s)
Year published
2009
Metadata
Show full item recordAbstract
The bacterial mechanosensitive (MS) channels of small (MscS) and large (MscL) conductance have functionally been reconstituted into giant unilamellar liposomes (GUVs) using an improved reconstitution method in the presence of sucrose. This method gives significant time savings (preparation times as little as 6 h) compared to the classical method of protein reconstitution which uses a dehydration/rehydration (D/R) procedure (minimum 2 days preparation time). Moreover, it represents the first highly reproducible method for functional reconstitution of MscS as well as MscS/MscL co-reconstitution. This novel procedure has the ...
View more >The bacterial mechanosensitive (MS) channels of small (MscS) and large (MscL) conductance have functionally been reconstituted into giant unilamellar liposomes (GUVs) using an improved reconstitution method in the presence of sucrose. This method gives significant time savings (preparation times as little as 6 h) compared to the classical method of protein reconstitution which uses a dehydration/rehydration (D/R) procedure (minimum 2 days preparation time). Moreover, it represents the first highly reproducible method for functional reconstitution of MscS as well as MscS/MscL co-reconstitution. This novel procedure has the potential to be used for studies of other ion channels by liposome reconstitution.
View less >
View more >The bacterial mechanosensitive (MS) channels of small (MscS) and large (MscL) conductance have functionally been reconstituted into giant unilamellar liposomes (GUVs) using an improved reconstitution method in the presence of sucrose. This method gives significant time savings (preparation times as little as 6 h) compared to the classical method of protein reconstitution which uses a dehydration/rehydration (D/R) procedure (minimum 2 days preparation time). Moreover, it represents the first highly reproducible method for functional reconstitution of MscS as well as MscS/MscL co-reconstitution. This novel procedure has the potential to be used for studies of other ion channels by liposome reconstitution.
View less >
Journal Title
FEBS Letters
Volume
583
Issue
2
Subject
Medicinal and biomolecular chemistry
Biochemistry and cell biology
Biochemistry and cell biology not elsewhere classified
Evolutionary biology