• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review

    Author(s)
    Petlin, Dan
    Tverdokhlebov, SI
    Anissimov, Yuri
    Griffith University Author(s)
    Anissimov, Yuri G.
    Petlin, Dan
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    One of the most actively developing fields in modern medicine is controlled drug delivery, an ability to keep optimal concentration of a drug at the desired body location. In particular, the most attention for potential use as drug delivery vehicles is drawn towards biodegradable polymeric materials. This is due to the versatility of tools for their fabrication, as well as due to the need to extract them after implantation being eliminated. In order to enhance polymer characteristics in terms of biocompatibility their surface can be functionalized. Plasma treatment is a method for the modification of material surface properties, ...
    View more >
    One of the most actively developing fields in modern medicine is controlled drug delivery, an ability to keep optimal concentration of a drug at the desired body location. In particular, the most attention for potential use as drug delivery vehicles is drawn towards biodegradable polymeric materials. This is due to the versatility of tools for their fabrication, as well as due to the need to extract them after implantation being eliminated. In order to enhance polymer characteristics in terms of biocompatibility their surface can be functionalized. Plasma treatment is a method for the modification of material surface properties, which spans a wide range of applications in tissue engineering and regenerative medicine. The main advantage of this method is its ability to modify a polymeric surface without altering the bulk properties of materials, thus preserving original mechanical characteristics. Moreover, plasma modification is well-known for its speed, excluded need for solvents, and scalability. Recently, this approach has been gaining popularity for drug delivery applications. The applications of plasma treatment during the fabrication of drug delivery vehicles include surface activation, enhanced wettability, the fabrication of hydrophobic barrier layer, induced cross-linking and improved drug loading. This review covers the variety of approaches, applied to different polymeric biomaterials, including non-woven meshes, films, microparticles, microneedles and tablets, in order to achieve a controlled drug release. The applications of drug delivery devices with an implemented plasma treatment modification are also described.
    View less >
    Journal Title
    Journal of Controlled Release
    Volume
    266
    DOI
    https://doi.org/10.1016/j.jconrel.2017.09.023
    Subject
    Biomedical engineering
    Biomedical engineering not elsewhere classified
    Chemical engineering
    Pharmacology and pharmaceutical sciences
    Science & Technology
    Physical Sciences
    Life Sciences & Biomedicine
    Chemistry, Multidisciplinary
    Pharmacology & Pharmacy
    Publication URI
    http://hdl.handle.net/10072/405587
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander