• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An Innovative Database for Epidemiological Field Studies of Neglected Tropical Diseases

    Thumbnail
    View/Open
    72468_1.pdf (941.0Kb)
    Author(s)
    J. Gray, Darren
    Forsyth, Simon
    S. Li, Robert
    P. McManus, Donald
    Li, Yuesheng
    Chen, Honggen
    Zheng, Feng
    Williams, Gail M.
    Griffith University Author(s)
    Gray, Darren
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    The neglected tropical diseases (NTDs) are of major public health importance, accounting for 56.6 million disability-adjusted life years (DALYs), which places them sixth out of the ten leading causes of life years lost to disability and premature death [1]. These diseases are prominent in the developing world where there is low income, poor hygiene, and inadequate sanitation [1],[2]. Recent targeting of these diseases for large-scale control programs by the World Health Organization [3] is likely to increase the number of epidemiological field studies requiring valid and reliable data, in order to determine the most appropriate ...
    View more >
    The neglected tropical diseases (NTDs) are of major public health importance, accounting for 56.6 million disability-adjusted life years (DALYs), which places them sixth out of the ten leading causes of life years lost to disability and premature death [1]. These diseases are prominent in the developing world where there is low income, poor hygiene, and inadequate sanitation [1],[2]. Recent targeting of these diseases for large-scale control programs by the World Health Organization [3] is likely to increase the number of epidemiological field studies requiring valid and reliable data, in order to determine the most appropriate strategies for control. In order to ensure a control strategy is effective and appropriate, the data need to be of a high standard, and as a result, epidemiological field studies require a rigorous and systematic approach to data management. Recent publications by Ali et al. [4] and Roberts et al. [5] stress that the importance of data management is often underestimated in such studies, with greater emphasis instead placed on the study design, data collection, and data analysis [4],[5]. This can result in an ad hoc approach to data management that ultimately affects the reliability and validity of the data collected and increases the workload involved in data cleaning. There are additional difficulties in developing countries in the collection, entry, management, and analysis of high-quality data, mainly due to limited infrastructure and capacity [4]-[7], which can exacerbate the problems associated with ensuring effective and reliable data management. We undertook an epidemiological study of the transmission dynamics of Schistosoma japonicum in China [8] that necessitated a rigorous approach to the collection and management of an extensive dataset. Some technical and conceptual constraints were encountered as the data management protocols in place were designed for the monitoring and control of schistosomiasis, rather than for the evaluation of a complex epidemiological study, requiring expertise in the principles and practice of data management. Language barriers provided additional challenges in implementing an efficient data management system. Accordingly, we present details of the innovative database we developed, which allowed us to produce data that were protected against data entry errors and therefore more likely to be of high quality and reliability. Furthermore, it also provided us with evidence of protection. This database can also serve as a template for other epidemiological studies of NTDs in the future.
    View less >
    Journal Title
    PLoS Neglected Tropical Diseases
    Volume
    3
    Issue
    5
    DOI
    https://doi.org/10.1371/journal.pntd.0000413
    Copyright Statement
    © 2009 Gray et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License CCAL. (http://www.plos.org/journals/license.html)
    Subject
    Epidemiology
    Biological Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/40566
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander