Facile Synthesis of Water-Stable Multicolor Carbonized Polymer Dots from a Single Unconjugated Glucose for Engineering White Light-Emitting Diodes with a High Color Rendering Index
Author(s)
Zhao, Yingnan
Ou, Cailing
Yu, Jingkun
Zhang, Yongqiang
Song, Haoqiang
Zhai, Yunpu
Tang, Zhiyong
Lu, Siyu
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Tunable emission carbonized polymer dots (CPDs) are highly desirable for the preparation of optoelectronic devices, especially white light-emitting diodes (WLEDs). In most available studies, polychromatic CPDs are synthesized using aromatic molecules as precursors. However, few studies report the successful synthesis of polychromatic CPDs using two or more unconjugated precursors. In this work, we prepare multicolor fluorescent CPDs from a single unconjugated precursor, glucose, via a hydrothermal reaction. By controlling the particle size and degree of graphitization of the synthesized CPDs, their emission wavelength can ...
View more >Tunable emission carbonized polymer dots (CPDs) are highly desirable for the preparation of optoelectronic devices, especially white light-emitting diodes (WLEDs). In most available studies, polychromatic CPDs are synthesized using aromatic molecules as precursors. However, few studies report the successful synthesis of polychromatic CPDs using two or more unconjugated precursors. In this work, we prepare multicolor fluorescent CPDs from a single unconjugated precursor, glucose, via a hydrothermal reaction. By controlling the particle size and degree of graphitization of the synthesized CPDs, their emission wavelength can be tuned in the range 440-625 nm (i.e., almost the entire visible region). Furthermore, the CPDs can be used to construct LEDs of varying colors, including WLEDs (CIE coordinates: 0.34, 0.36) with the correlated color temperature and color rendering index of 4997 K and 92.69, respectively. In brief, the strategy proposed in this study successfully converts unconjugated glucose into high-performance LEDs with great application potential.
View less >
View more >Tunable emission carbonized polymer dots (CPDs) are highly desirable for the preparation of optoelectronic devices, especially white light-emitting diodes (WLEDs). In most available studies, polychromatic CPDs are synthesized using aromatic molecules as precursors. However, few studies report the successful synthesis of polychromatic CPDs using two or more unconjugated precursors. In this work, we prepare multicolor fluorescent CPDs from a single unconjugated precursor, glucose, via a hydrothermal reaction. By controlling the particle size and degree of graphitization of the synthesized CPDs, their emission wavelength can be tuned in the range 440-625 nm (i.e., almost the entire visible region). Furthermore, the CPDs can be used to construct LEDs of varying colors, including WLEDs (CIE coordinates: 0.34, 0.36) with the correlated color temperature and color rendering index of 4997 K and 92.69, respectively. In brief, the strategy proposed in this study successfully converts unconjugated glucose into high-performance LEDs with great application potential.
View less >
Journal Title
ACS Applied Materials & Interfaces
Volume
13
Issue
25
Subject
Chemical sciences
Engineering
LEDs
carbonized polymer dots
high color rendering index
multicolor
unconjugated precursor