• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Differential effects of nitrogen vs. phosphorus limitation on terrestrial carbon storage in two subtropical forests: A Bayesian approach

    View/Open
    Embargoed until: 2023-06-24
    File version
    Accepted Manuscript (AM)
    Author(s)
    Du, Zhenggang
    Wang, Jiawei
    Zhou, Guiyao
    Bai, Shahla Hosseini
    Zhou, Lingyan
    Fu, Yuling
    Wang, Chuankuan
    Wang, Huiming
    Yu, Guirui
    Zhou, Xuhui
    Griffith University Author(s)
    Hosseini-Bai, Shahla
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Nitrogen (N) and phosphorus (P) have been demonstrated to limit terrestrial carbon (C) storage in terrestrial ecosystems. However, the reliable indicator to infer N and P limitation are still lacking, especially in subtropical forests. Here we used a terrestrial ecosystem (TECO) model framework in combination with a Bayesian approach to evaluate effects of nutrient limitation from added N/P processes and data sets on C storage capacities in two subtropical forests (Tiantong and Qianyanzhou [QYZ]). Three of the six simulation experiments were developed with assimilating data (TECO C model with C data [C-C], TECO C-N coupling ...
    View more >
    Nitrogen (N) and phosphorus (P) have been demonstrated to limit terrestrial carbon (C) storage in terrestrial ecosystems. However, the reliable indicator to infer N and P limitation are still lacking, especially in subtropical forests. Here we used a terrestrial ecosystem (TECO) model framework in combination with a Bayesian approach to evaluate effects of nutrient limitation from added N/P processes and data sets on C storage capacities in two subtropical forests (Tiantong and Qianyanzhou [QYZ]). Three of the six simulation experiments were developed with assimilating data (TECO C model with C data [C-C], TECO C-N coupling model with C and N data [CN-CN], and TECO C-N-P model with C, N, and P data [CNP-CNP]), and the other three ones were simulated without assimilating data (C-only, CN-only, and CNP-only). We found that P dominantly constrained C storage capacities in Tiantong (42%) whereas N limitation decreased C storage projections in QYZ (44%). Our analysis indicated that the stoichiometry of wood biomass and soil microbe (e.g., N:P ratio) were more sensitive indicators of N or P limitation than that of other pools. Furthermore, effects of P-induced limitation were mainly on root biomass by additional P data and on both metabolic litter and soil organic carbon (SOC) by added P processes. N-induced effects were mainly from added N data that limited plant non-photosynthetic tissues (e.g., woody biomass and litter). The different effects of N and P modules on C storage projections reflected the diverse nutrient acquisition strategies associated with stand ages and plant species under nutrient stressed environment. These findings suggest that the interaction between plants and microorganisms regulate effects of nutrient availability on ecosystem C storage, and stoichiometric flexibility of N and P in plant and soil C pools could improve the representation of N and P limitation in terrestrial ecosystem models.
    View less >
    Journal Title
    Science of the Total Environment
    Volume
    795
    DOI
    https://doi.org/10.1016/j.scitotenv.2021.148485
    Copyright Statement
    © 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Chemical sciences
    Physical chemistry
    Ecology
    Forestry sciences
    Biological stoichiometry
    Data assimilation
    Nitrogen process
    Nutrient limitation
    Phosphorus process
    Publication URI
    http://hdl.handle.net/10072/406326
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander