Historical and contemporary patterns of mercury in a hydroelectric reservoir and downstream fishery: Concentration decline in water and fishes
Author(s)
Green, Derek J
Duffy, Mark
Janz, David M
McCullum, Kevin
Carrière, Gary
Jardine, Timothy D
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Mercury (Hg) contamination can pose risks to human and animal health as well as commercial fisheries. Reservoir construction in riverine systems produces flooded conditions amenable to Hg(II)-methylating bacteria, which can transform this relatively benign environmental contaminant into the bioaccumulative, environmentally relevant, and neurotoxic methyl-Hg (MeHg). Hg concentrations ([Hg]) in fishes from reservoirs can take decades to decrease to pre-dam levels, but less is known about Hg exported downstream and its dynamics within downstream fish populations. We examined and compared the multidecadal rates of biotic [Hg] ...
View more >Mercury (Hg) contamination can pose risks to human and animal health as well as commercial fisheries. Reservoir construction in riverine systems produces flooded conditions amenable to Hg(II)-methylating bacteria, which can transform this relatively benign environmental contaminant into the bioaccumulative, environmentally relevant, and neurotoxic methyl-Hg (MeHg). Hg concentrations ([Hg]) in fishes from reservoirs can take decades to decrease to pre-dam levels, but less is known about Hg exported downstream and its dynamics within downstream fish populations. We examined and compared the multidecadal rates of biotic [Hg] decrease and contemporary factors affecting [Hg] in fish collected from a hydroelectric reservoir (Tobin Lake) and a related downstream fishery (Cumberland Lake) along the Saskatchewan River, Canada. Rates of [Hg] decrease were considered in four species—northern pike (Esox lucius), sauger (Sander canadensis), goldeye (Hiodon alosoides), and walleye (S. vitreus)—all of which showed a significant decrease over time (p < 0.001) and are now lower than Health Canada consumption guidelines (0.5 μg/g). Rates of decrease ranged from 0.5 to 3.9 %/year and were similar between sites in the cases of northern pike and sauger. Contemporary factors affecting [Hg] in walleye collected downstream include fish length (p < 0.001), fish age (p < 0.001), and trophic magnification through the food web (p < 0.001), and relationships between [Hg] and trophic level in predatory and prey fish are now similar to those found in non-Hg-inundated systems at a similar latitude. Together, these results suggest connected contamination between the two sites and delineate the timeline during which [Hg] in a variety of fish species decreased to nontoxic levels in both locations.
View less >
View more >Mercury (Hg) contamination can pose risks to human and animal health as well as commercial fisheries. Reservoir construction in riverine systems produces flooded conditions amenable to Hg(II)-methylating bacteria, which can transform this relatively benign environmental contaminant into the bioaccumulative, environmentally relevant, and neurotoxic methyl-Hg (MeHg). Hg concentrations ([Hg]) in fishes from reservoirs can take decades to decrease to pre-dam levels, but less is known about Hg exported downstream and its dynamics within downstream fish populations. We examined and compared the multidecadal rates of biotic [Hg] decrease and contemporary factors affecting [Hg] in fish collected from a hydroelectric reservoir (Tobin Lake) and a related downstream fishery (Cumberland Lake) along the Saskatchewan River, Canada. Rates of [Hg] decrease were considered in four species—northern pike (Esox lucius), sauger (Sander canadensis), goldeye (Hiodon alosoides), and walleye (S. vitreus)—all of which showed a significant decrease over time (p < 0.001) and are now lower than Health Canada consumption guidelines (0.5 μg/g). Rates of decrease ranged from 0.5 to 3.9 %/year and were similar between sites in the cases of northern pike and sauger. Contemporary factors affecting [Hg] in walleye collected downstream include fish length (p < 0.001), fish age (p < 0.001), and trophic magnification through the food web (p < 0.001), and relationships between [Hg] and trophic level in predatory and prey fish are now similar to those found in non-Hg-inundated systems at a similar latitude. Together, these results suggest connected contamination between the two sites and delineate the timeline during which [Hg] in a variety of fish species decreased to nontoxic levels in both locations.
View less >
Journal Title
Archives of Environmental Contamination and Toxicology
Volume
71
Issue
2
Subject
Marine and estuarine ecology (incl. marine ichthyology)
Fisheries sciences
Science & Technology
Life Sciences & Biomedicine
Environmental Sciences
Toxicology
Environmental Sciences & Ecology