• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Temperature and precipitation significantly influence the interactions between arbuscular mycorrhizal fungi and diazotrophs in karst ecosystems

    Author(s)
    Xiao, D
    Chen, Y
    He, X
    Xu, Z
    Hosseini Bai, S
    Zhang, W
    Cheng, M
    Hu, P
    Wang, K
    Griffith University Author(s)
    Hosseini-Bai, Shahla
    Xu, Zhihong
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Arbuscular mycorrhizal fungi (AMF) and diazotrophs have the potential for nutrient transfer and biological nitrogen fixation in ecosystems, respectively. However, their response to vegetation restoration remains unclear, especially under varying temperature and precipitation levels in karst ecosystems. This study aimed to understand the effects of three climatic levels within four natural and managed vegetation restoration types on the diversity and community composition of AMF and diazotrophs. The interactive effects of temperature, precipitation, and vegetation types affected AMF diversity, while diazotroph diversity was ...
    View more >
    Arbuscular mycorrhizal fungi (AMF) and diazotrophs have the potential for nutrient transfer and biological nitrogen fixation in ecosystems, respectively. However, their response to vegetation restoration remains unclear, especially under varying temperature and precipitation levels in karst ecosystems. This study aimed to understand the effects of three climatic levels within four natural and managed vegetation restoration types on the diversity and community composition of AMF and diazotrophs. The interactive effects of temperature, precipitation, and vegetation types affected AMF diversity, while diazotroph diversity was not affected. Under conditions of natural vegetation restoration, there was an increase in AMF diversity in response to increasing temperature and precipitation. AMF richness was higher in shrubland and mature forest than in cropland when temperatures were over 20 ℃ and precipitation was high. Thus, in terms of diversity, AMF were more responsive to changes in climatic conditions and vegetation recovery than diazotrophs. Both AMF and diazotroph community compositions were affected by temperature and vegetation type. The relative abundances of AMF groups (e.g., Gigaspora, Glomus, and Septoglomus) and diazotroph taxa (e.g., Frankia) increased at temperatures above 18 ℃. The relative abundances of the AMF genus Glomus and the diazotroph genus Bradyrhizobium in shrubland and mature forest were higher than those in cropland, while abundances of the AMF genus Septoglomus and diazotroph genus Anabaena increased in cropland. Network complexity increased with increasing temperature and precipitation between AMF and diazotroph taxa. Glomus and Bradyrhizobium showed the most links with other groups, confirming that the dominant genera perform well in the co-occurrence network. These results suggested high hydrothermal regions resist rapid nutrient decomposition by strengthening the interactions between AMF and diazotrophs, especially between the abundant groups Glomus and Bradyrhizobium. Management to increase AMF and diazotroph abundance during vegetation recovery in high climate level may stimulate nutrient absorption and transport.
    View less >
    Journal Title
    Forest Ecology and Management
    Volume
    497
    DOI
    https://doi.org/10.1016/j.foreco.2021.119464
    Subject
    Environmental sciences
    Biological sciences
    Ecology
    Plant biology
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/406569
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander