• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • gMatch: Knowledge base question answering via semantic matching

    Author(s)
    Jiao, J
    Wang, S
    Zhang, X
    Wang, L
    Feng, Z
    Wang, J
    Griffith University Author(s)
    Wang, John
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Effectiveness is essential for knowledge base question answering (KBQA) to determine whether the query can return the correct answers. Existing works for KBQA mainly focus on converting input questions into corresponding logic formats, such as SPARQL queries. However, since these works are largely decoupled from the knowledge base, the converted query may be ineffective. In this paper, we propose a novel semantic matching-based approach to model the query intention of the input question by extracting the subgraph of the knowledge base. The generation of the SPARQL query is reduced to semantic matching in the knowledge base ...
    View more >
    Effectiveness is essential for knowledge base question answering (KBQA) to determine whether the query can return the correct answers. Existing works for KBQA mainly focus on converting input questions into corresponding logic formats, such as SPARQL queries. However, since these works are largely decoupled from the knowledge base, the converted query may be ineffective. In this paper, we propose a novel semantic matching-based approach to model the query intention of the input question by extracting the subgraph of the knowledge base. The generation of the SPARQL query is reduced to semantic matching in the knowledge base to solve the ineffectiveness of the query. Firstly, a semantic query graph is proposed to model the reliable query intention of the input question. The SPARQL query graph could be extracted by matching the semantic query graph in the knowledge base. Secondly, an embedding-based method is developed to represent different forms of questions and queries in a common space. It is easy to detect semantic loss between the question and the converted query with the common representation. Finally, a data-driven semantic completion technique is presented to reduce the semantic loss by expanding the incomplete SPARQL query in the knowledge base. The experiments evaluated on benchmark datasets show that the proposed approach significantly outperforms state-of-the-art methods in efficiency and effectiveness. The code is available at https://github.com/offerhub-ht/gMatch.
    View less >
    Journal Title
    Knowledge-Based Systems
    Volume
    228
    DOI
    https://doi.org/10.1016/j.knosys.2021.107270
    Subject
    Information and computing sciences
    Publication URI
    http://hdl.handle.net/10072/406706
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander