Production of Human Norovirus Protruding Domains in E. coli for X-ray Crystallography

View/ Open
File version
Version of Record (VoR)
Author(s)
Leuthold, MM
Koromyslova, AD
Singh, BK
Hansman, GS
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
The norovirus capsid is composed of a single major structural protein, termed VP1. VP1 is subdivided into a shell (S) domain and a protruding (P) domain. The S domain forms a contiguous scaffold around the viral RNA, whereas the P domain forms viral spikes on the S domain and contains determinants for antigenicity and host-cell interactions. The P domain binds carbohydrate structures, i.e., histo-blood group antigens, which are thought to be important for norovirus infections. In this protocol, we describe a method for producing high quality norovirus P domains in high yields. These proteins can then be used for X-ray ...
View more >The norovirus capsid is composed of a single major structural protein, termed VP1. VP1 is subdivided into a shell (S) domain and a protruding (P) domain. The S domain forms a contiguous scaffold around the viral RNA, whereas the P domain forms viral spikes on the S domain and contains determinants for antigenicity and host-cell interactions. The P domain binds carbohydrate structures, i.e., histo-blood group antigens, which are thought to be important for norovirus infections. In this protocol, we describe a method for producing high quality norovirus P domains in high yields. These proteins can then be used for X-ray crystallography and ELISA in order to study antigenicity and host-cell interactions. The P domain is firstly cloned into an expression vector and then expressed in bacteria. The protein is purified using three steps that involve immobilized metal-ion affinity chromatography and size exclusion chromatography. In principle, it is possible to clone, express, purify, and crystallize proteins in less than four weeks, which makes this protocol a rapid system for analyzing newly emerging norovirus strains.
View less >
View more >The norovirus capsid is composed of a single major structural protein, termed VP1. VP1 is subdivided into a shell (S) domain and a protruding (P) domain. The S domain forms a contiguous scaffold around the viral RNA, whereas the P domain forms viral spikes on the S domain and contains determinants for antigenicity and host-cell interactions. The P domain binds carbohydrate structures, i.e., histo-blood group antigens, which are thought to be important for norovirus infections. In this protocol, we describe a method for producing high quality norovirus P domains in high yields. These proteins can then be used for X-ray crystallography and ELISA in order to study antigenicity and host-cell interactions. The P domain is firstly cloned into an expression vector and then expressed in bacteria. The protein is purified using three steps that involve immobilized metal-ion affinity chromatography and size exclusion chromatography. In principle, it is possible to clone, express, purify, and crystallize proteins in less than four weeks, which makes this protocol a rapid system for analyzing newly emerging norovirus strains.
View less >
Journal Title
Journal of Visualized Experiments (JoVE)
Volume
2016
Issue
110
Copyright Statement
© 2016 The Authors. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Biochemistry and cell biology
Clinical sciences
Oncology and carcinogenesis
Psychology
Cognitive and computational psychology
Science & Technology
Multidisciplinary Sciences
Molecular Biology