Optimal design and techno-economic assessment of low-carbon hydrogen supply pathways for a refueling station located in Shanghai
Author(s)
Chen, Q
Gu, Y
Tang, Z
Wang, D
Wu, Q
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
In order to assess the feasibility of utilizing renewable hydrogen as transport fuel for fuel cell vehicles, four possible low-carbon hydrogen supply routes for a hydrogen refueling station located in Shanghai are studied. Route Ⅰ and II are onsite hydrogen supply routes powered by a stand-alone or grid-connected photovoltaic (PV)-wind generation system separately. Route Ⅲ and IV are offsite hydrogen supply routes, in which hydrogen is produced by a stand-alone or grid-connected PV-wind generation system located in Qinghai Province respectively and delivered via liquid hydrogen truck to Shanghai. The microgrid system for ...
View more >In order to assess the feasibility of utilizing renewable hydrogen as transport fuel for fuel cell vehicles, four possible low-carbon hydrogen supply routes for a hydrogen refueling station located in Shanghai are studied. Route Ⅰ and II are onsite hydrogen supply routes powered by a stand-alone or grid-connected photovoltaic (PV)-wind generation system separately. Route Ⅲ and IV are offsite hydrogen supply routes, in which hydrogen is produced by a stand-alone or grid-connected PV-wind generation system located in Qinghai Province respectively and delivered via liquid hydrogen truck to Shanghai. The microgrid system for hydrogen production is designed and optimized with the aid of HOMER Pro® software. The results show that in hydrogen production stage, Route Ⅳ shows the best economic performance, both in the total net present cost (NPC) cost and levelized cost of energy (LCOE) cost. As for the whole hydrogen supply chain, Route IV is also the most economic hydrogen supply way, the levelized cost of hydrogen (LCOH) of which is slightly lower than that of Route II. The sensitivity results show that the total LCOH cost of Route Ⅳ is feasible based on the current shorter electrolyzer's lifetime. Therefore, it indicates that nowadays, producing hydrogen from a grid connected PV-wind hybrid power system in renewable energy rich area (Qinghai Province) and delivering it via liquid hydrogen truck to a refueling station in east coast area (Shanghai) of China may be a feasible solution.
View less >
View more >In order to assess the feasibility of utilizing renewable hydrogen as transport fuel for fuel cell vehicles, four possible low-carbon hydrogen supply routes for a hydrogen refueling station located in Shanghai are studied. Route Ⅰ and II are onsite hydrogen supply routes powered by a stand-alone or grid-connected photovoltaic (PV)-wind generation system separately. Route Ⅲ and IV are offsite hydrogen supply routes, in which hydrogen is produced by a stand-alone or grid-connected PV-wind generation system located in Qinghai Province respectively and delivered via liquid hydrogen truck to Shanghai. The microgrid system for hydrogen production is designed and optimized with the aid of HOMER Pro® software. The results show that in hydrogen production stage, Route Ⅳ shows the best economic performance, both in the total net present cost (NPC) cost and levelized cost of energy (LCOE) cost. As for the whole hydrogen supply chain, Route IV is also the most economic hydrogen supply way, the levelized cost of hydrogen (LCOH) of which is slightly lower than that of Route II. The sensitivity results show that the total LCOH cost of Route Ⅳ is feasible based on the current shorter electrolyzer's lifetime. Therefore, it indicates that nowadays, producing hydrogen from a grid connected PV-wind hybrid power system in renewable energy rich area (Qinghai Province) and delivering it via liquid hydrogen truck to a refueling station in east coast area (Shanghai) of China may be a feasible solution.
View less >
Journal Title
Energy
Volume
237
Subject
Mechanical engineering
Resources engineering and extractive metallurgy
Other engineering