• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays

    Author(s)
    Yuan, Dan
    Zhang, Jun
    Sluyter, Ronald
    Zhao, Qianbin
    Yan, Sheng
    Alici, Gursel
    Li, Weihua
    Griffith University Author(s)
    Zhang, Jun
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    In this paper, continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays (ECCA channel) is demonstrated by exploiting the Dean-flow-coupled elasto-inertial effects. First, the forces experienced by particles in the ECCA channel were discussed. Then, 4.8 μm diameter particles, which mimic the behaviour of red blood cells (RBCs), were used to study the effects of poly(ethylene oxide) (PEO) concentrations and flow rates on particle viscoelastic focusing. Also, 3 μm, 4.8 μm and 10 μm diameter particles, which are comparable in size to platelets, RBCs, and ...
    View more >
    In this paper, continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays (ECCA channel) is demonstrated by exploiting the Dean-flow-coupled elasto-inertial effects. First, the forces experienced by particles in the ECCA channel were discussed. Then, 4.8 μm diameter particles, which mimic the behaviour of red blood cells (RBCs), were used to study the effects of poly(ethylene oxide) (PEO) concentrations and flow rates on particle viscoelastic focusing. Also, 3 μm, 4.8 μm and 10 μm diameter particles, which are comparable in size to platelets, RBCs, and white blood cells (WBCs), respectively, were used to study the effect of particle size on particle viscoelastic focusing. Finally, plasma extraction from diluted blood samples under viscoelastic conditions was conducted, and the purity of the collected blood plasma was measured. After two series of filtration with the same ECCA channel, the purity of 3 μm, 4.8 μm and 10 μm diameter particles reached 100%, and the plasma purity reached 99.99%, as measured by a hemocytometer. In addition, flow cytometry data further validated the filtration performance of blood plasma. By exploiting the Dean-flow-coupled elasto-inertial effects, the ECCA channel offers a continuous, sheathless, and high purity plasma extraction.
    View less >
    Journal Title
    Lab on a Chip
    Volume
    16
    Issue
    20
    DOI
    https://doi.org/10.1039/c6lc00843g
    Subject
    Chemical sciences
    Engineering
    Science & Technology
    Life Sciences & Biomedicine
    Physical Sciences
    Technology
    Biochemical Research Methods
    Publication URI
    http://hdl.handle.net/10072/407257
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander