Gegen Qinlian Decoction abates nonalcoholic steatohepatitis associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of toll-like receptor 4 signaling pathways

View/ Open
File version
Version of Record (VoR)
Author(s)
Zhang, Chang-hua
Xiao, Qin
Sheng, Jun-qing
Liu, Tong-tong
Cao, Ying-qian
Xue, Ya-nan
Shi, Min
Cao, Zheng
Zhou, Li-fen
Luo, Xiao-quan
Deng, Ke-zhong
Chen, Chen
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
Gegen Qilian Decoction (GGQLD) is a well-established classic Chinese medicine prescription in treating nonalcoholic steatohepatitis (NASH). However, the molecular mechanism of GGQLD action on NASH is still not clear. This study aimed to assess the anti-NASH effect of GGQLD, and to explore its molecular mechanisms in vivo and in vitro. In HFD-fed rats, GGQLD decreased significantly serum triglyceride (TG), cholesterol (CHO), total bile acid (TBA), low-density lipoprotein (LDL), free fatty acid (FFA) and lipopolysaccharide (LPS) levels, increased levels of differentially expressed proteins (DEPs) Ahcy, Gpx1, Mat1a, GNMT, and ...
View more >Gegen Qilian Decoction (GGQLD) is a well-established classic Chinese medicine prescription in treating nonalcoholic steatohepatitis (NASH). However, the molecular mechanism of GGQLD action on NASH is still not clear. This study aimed to assess the anti-NASH effect of GGQLD, and to explore its molecular mechanisms in vivo and in vitro. In HFD-fed rats, GGQLD decreased significantly serum triglyceride (TG), cholesterol (CHO), total bile acid (TBA), low-density lipoprotein (LDL), free fatty acid (FFA) and lipopolysaccharide (LPS) levels, increased levels of differentially expressed proteins (DEPs) Ahcy, Gpx1, Mat1a, GNMT, and reduced the expression of ALDOB. In RAW264.7 macrophages, GGQLD reduced the expression levels of inflammatory factors TNF-α and IL-6 mRNA, and diminished NASH by increasing differentially expressed genes (DEGs) CBS, Mat1a, Hnf4α and Pparα to reduce oxidative stress or lipid metabolism. The results of DEGs verification also showed that GGQLD up-regulated expressions of Hnf4α, Pparα and Cbs genes. In HepG2 cells, GGQLD decreased IL-6 levels and intracellular TG content, and inhibited FFA-induced expression of toll-like receptor 4 (TLR4). In summary, GGQLD abates NASH associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of TLR4 signal pathways. These findings provide new insights into the anti-NASH therapy by GGQLD.
View less >
View more >Gegen Qilian Decoction (GGQLD) is a well-established classic Chinese medicine prescription in treating nonalcoholic steatohepatitis (NASH). However, the molecular mechanism of GGQLD action on NASH is still not clear. This study aimed to assess the anti-NASH effect of GGQLD, and to explore its molecular mechanisms in vivo and in vitro. In HFD-fed rats, GGQLD decreased significantly serum triglyceride (TG), cholesterol (CHO), total bile acid (TBA), low-density lipoprotein (LDL), free fatty acid (FFA) and lipopolysaccharide (LPS) levels, increased levels of differentially expressed proteins (DEPs) Ahcy, Gpx1, Mat1a, GNMT, and reduced the expression of ALDOB. In RAW264.7 macrophages, GGQLD reduced the expression levels of inflammatory factors TNF-α and IL-6 mRNA, and diminished NASH by increasing differentially expressed genes (DEGs) CBS, Mat1a, Hnf4α and Pparα to reduce oxidative stress or lipid metabolism. The results of DEGs verification also showed that GGQLD up-regulated expressions of Hnf4α, Pparα and Cbs genes. In HepG2 cells, GGQLD decreased IL-6 levels and intracellular TG content, and inhibited FFA-induced expression of toll-like receptor 4 (TLR4). In summary, GGQLD abates NASH associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of TLR4 signal pathways. These findings provide new insights into the anti-NASH therapy by GGQLD.
View less >
Journal Title
Biomedicine & Pharmacotherapy
Volume
126
Copyright Statement
© 2020 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
Subject
Pharmacology and pharmaceutical sciences
Science & Technology
Life Sciences & Biomedicine
Medicine, Research & Experimental
Research & Experimental Medicine
Pharmacy