• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Nearshore Wave Simulations and Wave Characteristics Analysis during Extreme Weather Events

    Thumbnail
    View/Open
    Oo510051-Published.pdf (3.191Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Oo, Ye Htet
    Zhang, Hong
    Colleter, Gildas
    Griffith University Author(s)
    Zhang, Hong
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Offshore storm wave direction may distinguish between an extreme event and a typical event experienced at nearshore. Using a state-of-the-art spectral wave (SW) model, the purposes of this study are: (1) to investigate the transformation of waves from offshore to nearshore along the coastline from two opposite directions (northerly and southerly); and (2) to analyse the offshore wave energy density spectrum. The SW model was calibrated considering various mesh resolutions and lateral wind forcing with different wind field resolutions. The results show that a longshore wave attenuation gradient exists from the southerly swell, ...
    View more >
    Offshore storm wave direction may distinguish between an extreme event and a typical event experienced at nearshore. Using a state-of-the-art spectral wave (SW) model, the purposes of this study are: (1) to investigate the transformation of waves from offshore to nearshore along the coastline from two opposite directions (northerly and southerly); and (2) to analyse the offshore wave energy density spectrum. The SW model was calibrated considering various mesh resolutions and lateral wind forcing with different wind field resolutions. The results show that a longshore wave attenuation gradient exists from the southerly swell, primarily due to different degrees of sheltering provided by the headland. In contrast, the coast essentially becomes an open coast from northerly swells, thereby producing a significant reduction in wave attenuation. The wave energy density spectrum indicates that wave pattern varies depending on offshore wave direction. Both storms produce a wide range of frequencies and directions. However, southerly swells only produce single-peaked spectrum, while double-peaked spectrum is observed in northerly swells due to the presence of prevailing swells and storm swells. This study highlights the significant reduction of wave attenuation when predominate offshore wave direction is abrupted.
    View less >
    Journal Title
    Journal of Coastal Research
    DOI
    https://doi.org/10.2112/jcoastres-d-21-00012.1
    Copyright Statement
    © 2021 CERF. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Earth sciences
    Engineering
    Maritime engineering
    Publication URI
    http://hdl.handle.net/10072/407338
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander