• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Cleaning with Bulk Nanobubbles

    Author(s)
    Zhu, Jie
    An, Hongjie
    Alheshibri, Muidh
    Liu, Lvdan
    Terpstra, Paul MJ
    Liu, Guangming
    Craig, Vincent SJ
    Griffith University Author(s)
    An, Hongjie
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    The electrolysis of aqueous solutions produces solutions that are supersaturated in oxygen and hydrogen gas. This results in the formation of gas bubbles, including nanobubbles ∼100 nm in size that are stable for ∼24 h. These aqueous solutions containing bubbles have been evaluated for cleaning efficacy in the removal of model contaminants bovine serum albumin and lysozyme from surfaces and in the prevention of the fouling of surfaces by these same proteins. Hydrophilic and hydrophobic surfaces were investigated. It is shown that nanobubbles can prevent the fouling of surfaces and that they can also clean already fouled ...
    View more >
    The electrolysis of aqueous solutions produces solutions that are supersaturated in oxygen and hydrogen gas. This results in the formation of gas bubbles, including nanobubbles ∼100 nm in size that are stable for ∼24 h. These aqueous solutions containing bubbles have been evaluated for cleaning efficacy in the removal of model contaminants bovine serum albumin and lysozyme from surfaces and in the prevention of the fouling of surfaces by these same proteins. Hydrophilic and hydrophobic surfaces were investigated. It is shown that nanobubbles can prevent the fouling of surfaces and that they can also clean already fouled surfaces. It is also argued that in practical applications where cleaning is carried out rapidly using a high degree of mechanical agitation the role of cleaning agents is not primarily in assisting the removal of soil but in suspending the soil that is removed by mechanical action and preventing it from redepositing onto surfaces. This may also be the primary mode of action of nanobubbles during cleaning.
    View less >
    Journal Title
    LANGMUIR
    Volume
    32
    Issue
    43
    DOI
    https://doi.org/10.1021/acs.langmuir.6b01004
    Subject
    Nanotechnology
    Microfluidics and nanofluidics
    Science & Technology
    Physical Sciences
    Technology
    Chemistry, Multidisciplinary
    Chemistry, Physical
    Publication URI
    http://hdl.handle.net/10072/407410
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander