Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely
View/ Open
File version
Version of Record (VoR)
Author(s)
Bahaghighat, M
Abedini, F
Xin, Q
Zanjireh, MM
Mirjalili, S
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Today, power generation from clean and renewable resources such as wind and solar is of great salience. Smart grid technology efficiently responds to the increasing demand for electric power. Intelligent monitoring, control, and maintenance of wind energy facilities are indispensable to increase the performance and efficiency of smart grids (SGs). Integration of state-of-the-art machine learning algorithms and vision sensor networks approaches pave the way toward enhancing the wind farms’ performance. The generating power in a wind turbine farm is the most critical parameter that should be measured accurately. Produced power ...
View more >Today, power generation from clean and renewable resources such as wind and solar is of great salience. Smart grid technology efficiently responds to the increasing demand for electric power. Intelligent monitoring, control, and maintenance of wind energy facilities are indispensable to increase the performance and efficiency of smart grids (SGs). Integration of state-of-the-art machine learning algorithms and vision sensor networks approaches pave the way toward enhancing the wind farms’ performance. The generating power in a wind turbine farm is the most critical parameter that should be measured accurately. Produced power is highly related to weather patterns, and a new farm in a near area is also likely to have similar energy generation. Therefore, accurate and perpetual prediction models of the existing wind farms can be led to develop new stations with lower costs. The paper aims to estimate the angular velocity of turbine blades using vision sensors and signal processing. The high wind in the wind farm can cause the camera to vibrate in successive frames, and the noise in the input images can also strengthen the problem. Thanks to couples of solid computer vision algorithms, including FAST (Features from Accelerated Segment Test), SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features), BF (Brute-Force), FLANN (Fast Library for Approximate Nearest Neighbors), AE (Autoencoder), and SVM (support vector machines), this paper accurately localizes the Hub and track the presence of the Blade in consecutive frames of a video stream. The simulation results show that determining the hub location and the blade presence in sequential frames results in an accurate estimation of wind turbine angular velocity with 95.36% accuracy.
View less >
View more >Today, power generation from clean and renewable resources such as wind and solar is of great salience. Smart grid technology efficiently responds to the increasing demand for electric power. Intelligent monitoring, control, and maintenance of wind energy facilities are indispensable to increase the performance and efficiency of smart grids (SGs). Integration of state-of-the-art machine learning algorithms and vision sensor networks approaches pave the way toward enhancing the wind farms’ performance. The generating power in a wind turbine farm is the most critical parameter that should be measured accurately. Produced power is highly related to weather patterns, and a new farm in a near area is also likely to have similar energy generation. Therefore, accurate and perpetual prediction models of the existing wind farms can be led to develop new stations with lower costs. The paper aims to estimate the angular velocity of turbine blades using vision sensors and signal processing. The high wind in the wind farm can cause the camera to vibrate in successive frames, and the noise in the input images can also strengthen the problem. Thanks to couples of solid computer vision algorithms, including FAST (Features from Accelerated Segment Test), SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features), BF (Brute-Force), FLANN (Fast Library for Approximate Nearest Neighbors), AE (Autoencoder), and SVM (support vector machines), this paper accurately localizes the Hub and track the presence of the Blade in consecutive frames of a video stream. The simulation results show that determining the hub location and the blade presence in sequential frames results in an accurate estimation of wind turbine angular velocity with 95.36% accuracy.
View less >
Journal Title
Energy Reports
Copyright Statement
© 2021 Published by Elsevier Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Subject
Electrical engineering
Environmental engineering
Mechanical engineering