• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Spatial variability of soil organic matter using remote sensing data

    Author(s)
    Mirzaee, S
    Ghorbani-Dashtaki, S
    Mohammadi, J
    Asadi, H
    Asadzadeh, F
    Griffith University Author(s)
    Asadi, Hossein
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Estimation of soil organic matter (SOM) at unsampled locations is crucial in agronomical and environmental studies. In this study, the ability of geostatistical methods such as ordinary kriging (OK), simple kriging (SK) and cokriging (CK) and hybrid geostatistical methods such as regression-simple kriging (RSK)/-ordinary kriging (ROK) and artificial neural network-simple kriging (ANNSK)/-ordinary kriging (ANNOK) was evaluated to predict SOM content. To this end, a set of 100 soil samples were collected from 0 to 15 cm depth of agricultural soils in Selin plain, northwest of Iran. The organic carbon was measured using ...
    View more >
    Estimation of soil organic matter (SOM) at unsampled locations is crucial in agronomical and environmental studies. In this study, the ability of geostatistical methods such as ordinary kriging (OK), simple kriging (SK) and cokriging (CK) and hybrid geostatistical methods such as regression-simple kriging (RSK)/-ordinary kriging (ROK) and artificial neural network-simple kriging (ANNSK)/-ordinary kriging (ANNOK) was evaluated to predict SOM content. To this end, a set of 100 soil samples were collected from 0 to 15 cm depth of agricultural soils in Selin plain, northwest of Iran. The organic carbon was measured using Walkley-Black method. An auxiliary variable was provided by remote sensing data (Landsat 7 ETM+). Three performance criteria including mean error (ME), root mean square error (RMSE) and coefficient of determination (R2) were used to evaluate the performance of the derived models. The results showed that the ANN model that used principal components (PCs) as input variables, performed better than the multiple linear regression (MLR) model. The hybrid geostatistical methods, which include ANNOK, ANNSK, ROK and RSK provided more reliable predictions than the geostatistical methods, which include SK, OK and CK. In general, the best prediction method for the estimation of SOM spatial distribution was the ANNOK model, which had the smallest RMSE (0.271%) and the highest R2 (0.633). It was concluded that information from Landsat ETM+ imagery is potential auxiliary variables for improving spatial prediction, monitoring SOM and development of high quality SOM maps, which is the primary step in site-specific soil management.
    View less >
    Journal Title
    Catena
    Volume
    145
    DOI
    https://doi.org/10.1016/j.catena.2016.05.023
    Subject
    Geology
    Physical geography and environmental geoscience
    Soil sciences
    Science & Technology
    Physical Sciences
    Life Sciences & Biomedicine
    Geosciences, Multidisciplinary
    Publication URI
    http://hdl.handle.net/10072/407721
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander