Classification ensembles for shaft test data : Empirical evaluation
Author(s)
Lee, K
Estivill-Castro, V
Griffith University Author(s)
Year published
2005
Metadata
Show full item recordAbstract
A-scans from ultrasonic testing of long shafts are complex signals. The discrimination of different types of echoes is of importance for non-destructive testing and equipment maintenance. Research has focused on selecting features of physical significance or exploring classifier like Artificial Neural Networks and Support Vector Machines. This paper confirms the observation that there seems to be uncorrelated errors among the variants explored in the past, and therefore an ensemble of classifiers is to achieve better discrimination accuracy. We explore the diverse possibilities of heterogeneous and homogeneous ensembles, ...
View more >A-scans from ultrasonic testing of long shafts are complex signals. The discrimination of different types of echoes is of importance for non-destructive testing and equipment maintenance. Research has focused on selecting features of physical significance or exploring classifier like Artificial Neural Networks and Support Vector Machines. This paper confirms the observation that there seems to be uncorrelated errors among the variants explored in the past, and therefore an ensemble of classifiers is to achieve better discrimination accuracy. We explore the diverse possibilities of heterogeneous and homogeneous ensembles, combination techniques, feature extraction methods and classifiers types and determine guidelines for heterogeneous combinations that result in superior performance.
View less >
View more >A-scans from ultrasonic testing of long shafts are complex signals. The discrimination of different types of echoes is of importance for non-destructive testing and equipment maintenance. Research has focused on selecting features of physical significance or exploring classifier like Artificial Neural Networks and Support Vector Machines. This paper confirms the observation that there seems to be uncorrelated errors among the variants explored in the past, and therefore an ensemble of classifiers is to achieve better discrimination accuracy. We explore the diverse possibilities of heterogeneous and homogeneous ensembles, combination techniques, feature extraction methods and classifiers types and determine guidelines for heterogeneous combinations that result in superior performance.
View less >
Journal Title
International Journal of Simulation: Systems, Science and Technology
Volume
6
Issue
10-11
Copyright Statement
© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.