Tunable Particle Focusing in a Straight Channel with Symmetric Semicircle Obstacle Arrays Using Electrophoresis-Modified Inertial Effects
Author(s)
Yuan, Dan
Pan, Chao
Zhang, Jun
Yan, Sheng
Zhao, Qianbin
Alici, Gursel
Li, Weihua
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
In this work, a novel microfluidic platform for tunable particle focusing in a straight channel with symmetric semicircle obstacle arrays using electrophoresis (EP)-modified inertial effects was presented. By exerting an EP force on the charged microparticles, a relative velocity gap between microspheres and fluid in a straight channel with symmetric semicircle obstacle arrays was implemented. The relative velocity and fluid shear will induce shear-slip lift force (Saffman lift force) perpendicular to the mainstream direction. Therefore, the focusing pattern can be altered using the electrophoresis-induced Saffman force. The ...
View more >In this work, a novel microfluidic platform for tunable particle focusing in a straight channel with symmetric semicircle obstacle arrays using electrophoresis (EP)-modified inertial effects was presented. By exerting an EP force on the charged microparticles, a relative velocity gap between microspheres and fluid in a straight channel with symmetric semicircle obstacle arrays was implemented. The relative velocity and fluid shear will induce shear-slip lift force (Saffman lift force) perpendicular to the mainstream direction. Therefore, the focusing pattern can be altered using the electrophoresis-induced Saffman force. The effects of electric field direction, flow rate, electric field magnitude, and particle size were also studied. This demonstrates the possibility of adjusting the particle inertial focusing pattern in a straight channel with with symmetric semicircle obstacle arrays using electrophoresis. Manipulation of the lateral migration of focusing streaks increases controllability in applications such as blood cell filtration and the separation of cells by size..
View less >
View more >In this work, a novel microfluidic platform for tunable particle focusing in a straight channel with symmetric semicircle obstacle arrays using electrophoresis (EP)-modified inertial effects was presented. By exerting an EP force on the charged microparticles, a relative velocity gap between microspheres and fluid in a straight channel with symmetric semicircle obstacle arrays was implemented. The relative velocity and fluid shear will induce shear-slip lift force (Saffman lift force) perpendicular to the mainstream direction. Therefore, the focusing pattern can be altered using the electrophoresis-induced Saffman force. The effects of electric field direction, flow rate, electric field magnitude, and particle size were also studied. This demonstrates the possibility of adjusting the particle inertial focusing pattern in a straight channel with with symmetric semicircle obstacle arrays using electrophoresis. Manipulation of the lateral migration of focusing streaks increases controllability in applications such as blood cell filtration and the separation of cells by size..
View less >
Journal Title
Micromachines
Volume
7
Issue
11
Subject
Nanotechnology
Science & Technology
Physical Sciences
Technology
Chemistry, Analytical
Nanoscience & Nanotechnology