Long Non-coding RNA BGas Regulates the Cystic Fibrosis Transmembrane Conductance Regulator
Author(s)
Saayman, Sheena M
Ackley, Amanda
Burdach, Jon
Clemson, Matthew
Gruenert, Dieter C
Tachikawa, Kiyoshi
Chivukula, Pad
Weinberg, Marc S
Morris, Kevin V
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Cystic fibrosis (CF) is a life-shortening genetic disease. The root cause of CF is heritable recessive mutations that affect the cystic fibrosis transmembrance conductance regulator (CFTR) gene and the subsequent expression and activity of encoded ion channels at the cell surface. We show that CFTR is regulated transcriptionally by the actions of a novel long noncoding RNA (lncRNA), designated as BGas, that emanates from intron 11 of the CFTR gene and is expressed in the antisense orientation relative to the protein coding sense strand. We find that BGas functions in concert with several proteins including HMGA1, HMGB1, and ...
View more >Cystic fibrosis (CF) is a life-shortening genetic disease. The root cause of CF is heritable recessive mutations that affect the cystic fibrosis transmembrance conductance regulator (CFTR) gene and the subsequent expression and activity of encoded ion channels at the cell surface. We show that CFTR is regulated transcriptionally by the actions of a novel long noncoding RNA (lncRNA), designated as BGas, that emanates from intron 11 of the CFTR gene and is expressed in the antisense orientation relative to the protein coding sense strand. We find that BGas functions in concert with several proteins including HMGA1, HMGB1, and WIBG to modulate the local chromatin and DNA architecture of intron 11 of the CFTR gene and thereby affects transcription. Suppression of BGas or its associated proteins results in a gain of both CFTR expression and chloride ion function. The observations described here highlight a previously underappreciated mechanism of transcriptional control and suggest that BGas may serve as a therapeutic target for specifically activating expression of CFTR.
View less >
View more >Cystic fibrosis (CF) is a life-shortening genetic disease. The root cause of CF is heritable recessive mutations that affect the cystic fibrosis transmembrance conductance regulator (CFTR) gene and the subsequent expression and activity of encoded ion channels at the cell surface. We show that CFTR is regulated transcriptionally by the actions of a novel long noncoding RNA (lncRNA), designated as BGas, that emanates from intron 11 of the CFTR gene and is expressed in the antisense orientation relative to the protein coding sense strand. We find that BGas functions in concert with several proteins including HMGA1, HMGB1, and WIBG to modulate the local chromatin and DNA architecture of intron 11 of the CFTR gene and thereby affects transcription. Suppression of BGas or its associated proteins results in a gain of both CFTR expression and chloride ion function. The observations described here highlight a previously underappreciated mechanism of transcriptional control and suggest that BGas may serve as a therapeutic target for specifically activating expression of CFTR.
View less >
Journal Title
Molecular Therapy
Volume
24
Issue
8
Subject
Biological sciences
Biomedical and clinical sciences
Science & Technology
Life Sciences & Biomedicine
Biotechnology & Applied Microbiology
Genetics & Heredity
Medicine, Research & Experimental