• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay

    Author(s)
    Yap, Lim Wei
    Chen, Huaying
    Gao, Yuan
    Petkovic, Karolina
    Liang, Yan
    Si, Kae Jye
    Wang, Huanting
    Tang, Zhiyong
    Zhu, Yonggang
    Cheng, Wenlong
    Griffith University Author(s)
    Tang, Zhiyong
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Surface-Enhanced Raman Scattering (SERS) is emerging as a promising strategy for the quantification of immunoglobulin G (IgG) due to its inherent high sensitivity and specificity; however, it remains challenging to integrate SERS detection with a microfluidic system in a simple, efficient and low-cost manner. Here, we report on a novel bifunctional plasmonic-magnetic particle-based immunoassay, in which plasmonic nanoparticles act as soluble SERS immunosubstrates, whereas magnetic particles are for promoting micromixing in a microfluidic chip. With this novel SERS immunosubstrate in conjunction with the unique microfluidic ...
    View more >
    Surface-Enhanced Raman Scattering (SERS) is emerging as a promising strategy for the quantification of immunoglobulin G (IgG) due to its inherent high sensitivity and specificity; however, it remains challenging to integrate SERS detection with a microfluidic system in a simple, efficient and low-cost manner. Here, we report on a novel bifunctional plasmonic-magnetic particle-based immunoassay, in which plasmonic nanoparticles act as soluble SERS immunosubstrates, whereas magnetic particles are for promoting micromixing in a microfluidic chip. With this novel SERS immunosubstrate in conjunction with the unique microfluidic system, we could substantially reduce the assay time from 4 hours to 80 minutes as well as enhance the detection specificity by about 70% in comparison to a non-microfluidic immunoassay. Compared to previous microfluidic SERS systems, our strategy offers a simple microfluidic chip design with only one well for mixing, washing and detection.
    View less >
    Journal Title
    Nanoscale
    Volume
    9
    Issue
    23
    DOI
    https://doi.org/10.1039/c7nr01511a
    Subject
    Physical sciences
    Chemical sciences
    Science & Technology
    Physical Sciences
    Technology
    Chemistry, Multidisciplinary
    Nanoscience & Nanotechnology
    Publication URI
    http://hdl.handle.net/10072/408315
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander