Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay
Author(s)
Yap, Lim Wei
Chen, Huaying
Gao, Yuan
Petkovic, Karolina
Liang, Yan
Si, Kae Jye
Wang, Huanting
Tang, Zhiyong
Zhu, Yonggang
Cheng, Wenlong
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
Surface-Enhanced Raman Scattering (SERS) is emerging as a promising strategy for the quantification of immunoglobulin G (IgG) due to its inherent high sensitivity and specificity; however, it remains challenging to integrate SERS detection with a microfluidic system in a simple, efficient and low-cost manner. Here, we report on a novel bifunctional plasmonic-magnetic particle-based immunoassay, in which plasmonic nanoparticles act as soluble SERS immunosubstrates, whereas magnetic particles are for promoting micromixing in a microfluidic chip. With this novel SERS immunosubstrate in conjunction with the unique microfluidic ...
View more >Surface-Enhanced Raman Scattering (SERS) is emerging as a promising strategy for the quantification of immunoglobulin G (IgG) due to its inherent high sensitivity and specificity; however, it remains challenging to integrate SERS detection with a microfluidic system in a simple, efficient and low-cost manner. Here, we report on a novel bifunctional plasmonic-magnetic particle-based immunoassay, in which plasmonic nanoparticles act as soluble SERS immunosubstrates, whereas magnetic particles are for promoting micromixing in a microfluidic chip. With this novel SERS immunosubstrate in conjunction with the unique microfluidic system, we could substantially reduce the assay time from 4 hours to 80 minutes as well as enhance the detection specificity by about 70% in comparison to a non-microfluidic immunoassay. Compared to previous microfluidic SERS systems, our strategy offers a simple microfluidic chip design with only one well for mixing, washing and detection.
View less >
View more >Surface-Enhanced Raman Scattering (SERS) is emerging as a promising strategy for the quantification of immunoglobulin G (IgG) due to its inherent high sensitivity and specificity; however, it remains challenging to integrate SERS detection with a microfluidic system in a simple, efficient and low-cost manner. Here, we report on a novel bifunctional plasmonic-magnetic particle-based immunoassay, in which plasmonic nanoparticles act as soluble SERS immunosubstrates, whereas magnetic particles are for promoting micromixing in a microfluidic chip. With this novel SERS immunosubstrate in conjunction with the unique microfluidic system, we could substantially reduce the assay time from 4 hours to 80 minutes as well as enhance the detection specificity by about 70% in comparison to a non-microfluidic immunoassay. Compared to previous microfluidic SERS systems, our strategy offers a simple microfluidic chip design with only one well for mixing, washing and detection.
View less >
Journal Title
Nanoscale
Volume
9
Issue
23
Subject
Physical sciences
Chemical sciences
Science & Technology
Physical Sciences
Technology
Chemistry, Multidisciplinary
Nanoscience & Nanotechnology