• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments

    View/Open
    Tischler512926-Published.pdf (2.720Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Krenn, M
    Kottmann, JS
    Tischler, N
    Aspuru-Guzik, A
    Griffith University Author(s)
    Tischler, Nora
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Artificial intelligence (AI) is a potentially disruptive tool for physics and science in general. One crucial question is how this technology can contribute at a conceptual level to help acquire new scientific understanding. Scientists have used AI techniques to rediscover previously known concepts. So far, no examples of that kind have been reported that are applied to open problems for getting new scientific concepts and ideas. Here, we present Theseus, an algorithm that can provide new conceptual understanding, and we demonstrate its applications in the field of experimental quantum optics. To do so, we make four crucial ...
    View more >
    Artificial intelligence (AI) is a potentially disruptive tool for physics and science in general. One crucial question is how this technology can contribute at a conceptual level to help acquire new scientific understanding. Scientists have used AI techniques to rediscover previously known concepts. So far, no examples of that kind have been reported that are applied to open problems for getting new scientific concepts and ideas. Here, we present Theseus, an algorithm that can provide new conceptual understanding, and we demonstrate its applications in the field of experimental quantum optics. To do so, we make four crucial contributions. (i) We introduce a graph-based representation of quantum optical experiments that can be interpreted and used algorithmically. (ii) We develop an automated design approach for new quantum experiments, which is orders of magnitude faster than the best previous algorithms at concrete design tasks for experimental configuration. (iii) We solve several crucial open questions in experimental quantum optics which involve practical blueprints of resource states in photonic quantum technology and quantum states and transformations that allow for new foundational quantum experiments. Finally, and most importantly, (iv) the interpretable representation and enormous speed-up allow us to produce solutions that a human scientist can interpret and gain new scientific concepts from outright. We anticipate that Theseus will become an essential tool in quantum optics for developing new experiments and photonic hardware. It can further be generalized to answer open questions and provide new concepts in a large number of other quantum physical questions beyond quantum optical experiments. Theseus is a demonstration of explainable AI (XAI) in physics that shows how AI algorithms can contribute to science on a conceptual level.
    View less >
    Journal Title
    Physical Review X
    Volume
    11
    Issue
    3
    DOI
    https://doi.org/10.1103/PhysRevX.11.031044
    Copyright Statement
    © The Author(s) 2021. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
    Subject
    Quantum physics
    Condensed matter physics
    Astronomical sciences
    Publication URI
    http://hdl.handle.net/10072/408477
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander