Performance of different hybrid algorithms for prediction of wind speed behavior
Author(s)
Mostafaeipour, Ali
Goli, Alireza
Rezaei, Mostafa
Qolipour, Mojtaba
Arabnia, Hamid-Reza
Goudarzi, Hossein
Behnam, Elham
Griffith University Author(s)
Year published
2019
Metadata
Show full item recordAbstract
This study seeks to provide a new method by proposing three hybrid algorithms. The proposed algorithms include genetic neural network hybrid algorithm, simulated annealing neural network hybrid algorithm, and shuffled frog-leaping neural network hybrid algorithm. The efficiency and reliability of the presented hybrid algorithms in prediction of wind speed behavior were evaluated using meteorological data of the city of Abadeh for a 10-year period from 2005 to 2015. The forecasting horizon is monthly for this study. The study parameters consisted of TMAX, TMIN, VP, RHMIN, RHMAX, WIND SPEED, PRECIPITATION, and SUNSHINE HOURS. ...
View more >This study seeks to provide a new method by proposing three hybrid algorithms. The proposed algorithms include genetic neural network hybrid algorithm, simulated annealing neural network hybrid algorithm, and shuffled frog-leaping neural network hybrid algorithm. The efficiency and reliability of the presented hybrid algorithms in prediction of wind speed behavior were evaluated using meteorological data of the city of Abadeh for a 10-year period from 2005 to 2015. The forecasting horizon is monthly for this study. The study parameters consisted of TMAX, TMIN, VP, RHMIN, RHMAX, WIND SPEED, PRECIPITATION, and SUNSHINE HOURS. These eight parameters are used as the inputs, and one parameter (ET) is used as the output. Research findings show that the shuffled frog-leaping neural network hybrid algorithm providing a root mean square error value of 0.0761 and reliability of 0.91 is more suitable than other hybrid algorithms for prediction of wind speed behavior in the study area.
View less >
View more >This study seeks to provide a new method by proposing three hybrid algorithms. The proposed algorithms include genetic neural network hybrid algorithm, simulated annealing neural network hybrid algorithm, and shuffled frog-leaping neural network hybrid algorithm. The efficiency and reliability of the presented hybrid algorithms in prediction of wind speed behavior were evaluated using meteorological data of the city of Abadeh for a 10-year period from 2005 to 2015. The forecasting horizon is monthly for this study. The study parameters consisted of TMAX, TMIN, VP, RHMIN, RHMAX, WIND SPEED, PRECIPITATION, and SUNSHINE HOURS. These eight parameters are used as the inputs, and one parameter (ET) is used as the output. Research findings show that the shuffled frog-leaping neural network hybrid algorithm providing a root mean square error value of 0.0761 and reliability of 0.91 is more suitable than other hybrid algorithms for prediction of wind speed behavior in the study area.
View less >
Journal Title
Wind Engineering
Volume
45
Issue
2
Subject
Environmental engineering
Maritime engineering
Science & Technology
Energy & Fuels
Wind speed prediction
neural network