Show simple item record

dc.contributor.authorMostafaeipour, Ali
dc.contributor.authorGoli, Alireza
dc.contributor.authorRezaei, Mostafa
dc.contributor.authorQolipour, Mojtaba
dc.contributor.authorArabnia, Hamid-Reza
dc.contributor.authorGoudarzi, Hossein
dc.contributor.authorBehnam, Elham
dc.date.accessioned2021-10-05T01:56:51Z
dc.date.available2021-10-05T01:56:51Z
dc.date.issued2019
dc.identifier.issn0309-524X
dc.identifier.doi10.1177/0309524X19882431
dc.identifier.urihttp://hdl.handle.net/10072/408535
dc.description.abstractThis study seeks to provide a new method by proposing three hybrid algorithms. The proposed algorithms include genetic neural network hybrid algorithm, simulated annealing neural network hybrid algorithm, and shuffled frog-leaping neural network hybrid algorithm. The efficiency and reliability of the presented hybrid algorithms in prediction of wind speed behavior were evaluated using meteorological data of the city of Abadeh for a 10-year period from 2005 to 2015. The forecasting horizon is monthly for this study. The study parameters consisted of TMAX, TMIN, VP, RHMIN, RHMAX, WIND SPEED, PRECIPITATION, and SUNSHINE HOURS. These eight parameters are used as the inputs, and one parameter (ET) is used as the output. Research findings show that the shuffled frog-leaping neural network hybrid algorithm providing a root mean square error value of 0.0761 and reliability of 0.91 is more suitable than other hybrid algorithms for prediction of wind speed behavior in the study area.
dc.description.peerreviewedYes
dc.languageEnglish
dc.publisherSage Publications Ltd
dc.relation.ispartofpagefrom245
dc.relation.ispartofpageto256
dc.relation.ispartofissue2
dc.relation.ispartofjournalWind Engineering
dc.relation.ispartofvolume45
dc.subject.fieldofresearchEnvironmental engineering
dc.subject.fieldofresearchMaritime engineering
dc.subject.fieldofresearchcode4011
dc.subject.fieldofresearchcode4015
dc.subject.keywordsScience & Technology
dc.subject.keywordsEnergy & Fuels
dc.subject.keywordsWind speed prediction
dc.subject.keywordsneural network
dc.titlePerformance of different hybrid algorithms for prediction of wind speed behavior
dc.typeJournal article
dc.type.descriptionC1 - Articles
dcterms.bibliographicCitationMostafaeipour, A; Goli, A; Rezaei, M; Qolipour, M; Arabnia, H-R; Goudarzi, H; Behnam, E, Performance of different hybrid algorithms for prediction of wind speed behavior, Wind Engineering, 2019, 45 (2), pp. 245-256
dc.date.updated2021-10-05T01:55:42Z
gro.hasfulltextNo Full Text
gro.griffith.authorRezaei, Mostafa


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record