• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries

    View/Open
    Chen513378-Published.pdf (6.698Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Chen, Hao
    Zheng, Mengting
    Qian, Shangshu
    Ling, Han Yeu
    Wu, Zhenzhen
    Liu, Xianhu
    Yan, Cheng
    Zhang, Shanqing
    Griffith University Author(s)
    Chen, Hao
    Wu, Zhenzhen
    Ling, Michael
    Zhang, Shanqing
    Qian, Shangshu
    Zheng, Mengting
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Solid polymer electrolytes (SPEs) have become increasingly attractive in solid-state lithium-ion batteries (SSLIBs) in recent years because of their inherent properties of flexibility, processability, and interfacial compatibility. However, the commercialization of SPEs remains challenging for flexible and high-energy-density LIBs. The incorporation of functional additives into SPEs could significantly improve the electrochemical and mechanical properties of SPEs and has created some historical milestones in boosting the development of SPEs. In this study, we review the roles of additives in SPEs, highlighting the working ...
    View more >
    Solid polymer electrolytes (SPEs) have become increasingly attractive in solid-state lithium-ion batteries (SSLIBs) in recent years because of their inherent properties of flexibility, processability, and interfacial compatibility. However, the commercialization of SPEs remains challenging for flexible and high-energy-density LIBs. The incorporation of functional additives into SPEs could significantly improve the electrochemical and mechanical properties of SPEs and has created some historical milestones in boosting the development of SPEs. In this study, we review the roles of additives in SPEs, highlighting the working mechanisms and functionalities of the additives. The additives could afford significant advantages in boosting ionic conductivity, increasing ion transference number, improving high-voltage stability, enhancing mechanical strength, inhibiting lithium dendrite, and reducing flammability. Moreover, the application of functional additives in high-voltage cathodes, lithium–sulfur batteries, and flexible lithium-ion batteries is summarized. Finally, future research perspectives are proposed to overcome the unresolved technical hurdles and critical issues in additives of SPEs, such as facile fabrication process, interfacial compatibility, investigation of the working mechanism, and special functionalities.
    View less >
    Journal Title
    Carbon Energy
    DOI
    https://doi.org/10.1002/cey2.146
    Copyright Statement
    © 2021 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Electrical engineering
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Energy & Fuels
    Publication URI
    http://hdl.handle.net/10072/408696
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander