• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • DC-link voltage regulation of inverters to enhance microgrid stability during network contingencies

    Thumbnail
    View/Open
    Hossain225733-Accepted.pdf (1.797Mb)
    Author(s)
    Hossain, MA
    Pota, HR
    Haruni, AMO
    Hossain, MJ
    Griffith University Author(s)
    Hossain, Md. Alamgir
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Equal power-rating inverters operating with different power set-points in either an islanded or grid-connected mode may lead to inter-unit circulating power caused by a large mismatch between power generation and demand during network contingencies (faults on the heavy load side or unintentional islanding). This circulating power may violate the dc-link voltage limit and, as a result, the protection scheme may shut down the inverter and reduce the microgrids reliability. This paper proposes a regulator for controlling the dc-link voltage of the microgrid's inverter during a period of circulating power. It includes a discharging ...
    View more >
    Equal power-rating inverters operating with different power set-points in either an islanded or grid-connected mode may lead to inter-unit circulating power caused by a large mismatch between power generation and demand during network contingencies (faults on the heavy load side or unintentional islanding). This circulating power may violate the dc-link voltage limit and, as a result, the protection scheme may shut down the inverter and reduce the microgrids reliability. This paper proposes a regulator for controlling the dc-link voltage of the microgrid's inverter during a period of circulating power. It includes a discharging resistor with a series-connected switch across the dc-link capacitor which is turned on through a control algorithm if the dc-link voltage exceeds its pre-defined limit. Case studies of parallel-connected inverters are conducted and their stability assessed through a small-signal analysis. In addition, a realistic microgrid is designed as a low-voltage (LV) network and tested to verify the concept and regulator actions presented. The simulation results validate the effectiveness of the proposed regulator during network contingencies.
    View less >
    Journal Title
    Electric Power Systems Research
    Volume
    147
    DOI
    https://doi.org/10.1016/j.epsr.2017.02.026
    Copyright Statement
    © 2017Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Electrical engineering
    Electronics, sensors and digital hardware
    Science & Technology
    Engineering, Electrical & Electronic
    DC-link voltage
    Publication URI
    http://hdl.handle.net/10072/408700
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander