• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Comparing food-web impacts of a native invertebrate and an invasive fish as predators in small floodplain wetlands

    Author(s)
    Ho, Susie S
    Bond, Nick R
    Lake, P Sam
    Griffith University Author(s)
    Bond, Nick R.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Gambusia holbrooki is an invasive predatory poeciliid fish in wetlands of south-eastern Australia, where it coexists with the native waterbug Anisops thienemanni (Notonectidae). Gambusia has been shown to produce trophic cascades, leading to increased algal biomass following invasion, whereas these effects relative to the often-dominant invertebrate predator Anisops are unknown. Given its flexible diet, we predicted that Gambusia would feed more broadly than Anisops, thereby reducing the abundance of zooplankton grazers, and increasing chlorophyll a. We tested this hypothesis in experimental 110-L wetland mesocosms, using ...
    View more >
    Gambusia holbrooki is an invasive predatory poeciliid fish in wetlands of south-eastern Australia, where it coexists with the native waterbug Anisops thienemanni (Notonectidae). Gambusia has been shown to produce trophic cascades, leading to increased algal biomass following invasion, whereas these effects relative to the often-dominant invertebrate predator Anisops are unknown. Given its flexible diet, we predicted that Gambusia would feed more broadly than Anisops, thereby reducing the abundance of zooplankton grazers, and increasing chlorophyll a. We tested this hypothesis in experimental 110-L wetland mesocosms, using Gambusia and Anisops alone and in combination, in addition to no-predator treatments. We ran two experiments lasting 91 and 35 days, respectively. Both fish and macroinvertebrates generated weak trophic cascades, resulting in minor increases in chlorophyll a above concentrations in control treatments. Gambusia, in lowering total zooplankton abundances, triggered a larger, although still relatively small, algal response relative to Anisops. Impacts of both predators on dominant invertebrate grazers (e.g. Simocephalus spp., copepod nauplii) were similar, although Anisops was associated with an increase in ostracod (Newnhamia sp.) numbers. The similar trophic role of the two predators on algae was unexpected, given their different effects on planktonic communities and their very different taxonomic positions and zoogeographic origins.
    View less >
    Journal Title
    Marine & Freshwater Research
    Volume
    62
    Issue
    4
    DOI
    https://doi.org/10.1071/MF10222
    Subject
    Biosecurity science and invasive species ecology
    Publication URI
    http://hdl.handle.net/10072/40871
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander