• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Micro-generation dispatch in a smart residential multi-carrier energy system considering demand forecast error

    Author(s)
    Sanjari, MJ
    Karami, H
    Gooi, HB
    Griffith University Author(s)
    Sanjari, Mohammad
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    This paper deals with a residential hybrid thermal/electrical grid-connected home energy system incorporating real data for the load demand. A day-ahead scheduling (DAS) algorithm for dispatching different resources has been developed in previous studies to determine the optimal operation scheduling for the distributed energy resources at each time interval so that the operational cost of a smart house is minimized. However, demand of houses may be changed in each hour and cannot be exactly predicted one day ahead. System complexity caused by nonlinear dynamics of the fuel cell, as a combined heat and power device, and battery ...
    View more >
    This paper deals with a residential hybrid thermal/electrical grid-connected home energy system incorporating real data for the load demand. A day-ahead scheduling (DAS) algorithm for dispatching different resources has been developed in previous studies to determine the optimal operation scheduling for the distributed energy resources at each time interval so that the operational cost of a smart house is minimized. However, demand of houses may be changed in each hour and cannot be exactly predicted one day ahead. System complexity caused by nonlinear dynamics of the fuel cell, as a combined heat and power device, and battery charging and discharging time make it difficult to find the optimal operating point of the system by using the optimization algorithms quickly in online applications. In this paper, the demand forecast error is studied and a near-optimal dispatch strategy by using artificial neural network (ANN) is proposed for the residential energy system when the demand changes are known one hour ahead with respect to the predicted day-ahead values. The day-ahead and hour-ahead optimizations are combined and ANN training inputs are adjusted according to the problem such that the economic dispatch of different energy resources can be achieved by the proposed method compared with previous studies. Using the model of the fuel cell extracted from experimental measurement and real data for the load demand makes the results more applicable in real residential energy systems.
    View less >
    Journal Title
    Energy Conversion and Management
    Volume
    120
    DOI
    https://doi.org/10.1016/j.enconman.2016.04.092
    Subject
    Mechanical engineering
    Electrical engineering
    Electronics, sensors and digital hardware
    Science & Technology
    Physical Sciences
    Technology
    Thermodynamics
    Energy & Fuels
    Publication URI
    http://hdl.handle.net/10072/408717
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander