• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • New polymer passive sampler for sensitive biomonitoring of lipid-rich matrices (Letter)

    Author(s)
    Durig, Wiebke
    Blakey, Idriss
    Grant, Sharon
    Chambers, Lewis
    Escher, Beate I
    Weijs, Liesbeth
    Gaus, Caroline
    Griffith University Author(s)
    Weijs, Liesbeth
    Escher, Beate
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    The feasibility of passive sampling biological matrices to quantify contaminants has been demonstrated using polydimethylsiloxane (PDMS). PDMS has, however, low sorptive capacity for hydrophobic compounds (with Klipid-PDMS ∼ 30-40), and increasing the sampler volume and thus the extent of chemical mass transfer is not feasible because of concomitant lipid transfer. We therefore developed new polymers by graft polymerization from PDMS substrates and evaluated the mechanism and kinetics of lipid transfer. Klipid-polymer was significantly improved to 6.7 ± 0.53 for dioxins and 0.78 ± 0.15 for PCBs using poly(tert-butyl methacrylate) ...
    View more >
    The feasibility of passive sampling biological matrices to quantify contaminants has been demonstrated using polydimethylsiloxane (PDMS). PDMS has, however, low sorptive capacity for hydrophobic compounds (with Klipid-PDMS ∼ 30-40), and increasing the sampler volume and thus the extent of chemical mass transfer is not feasible because of concomitant lipid transfer. We therefore developed new polymers by graft polymerization from PDMS substrates and evaluated the mechanism and kinetics of lipid transfer. Klipid-polymer was significantly improved to 6.7 ± 0.53 for dioxins and 0.78 ± 0.15 for PCBs using poly(tert-butyl methacrylate) (PtBuMA) chain grafts. Consistent with this, the PtBuMA solubility of selected dioxins was 6-10 times higher than that of PDMS. Lipid transfer followed a swelling process, which was rapid (t95% = 20-72 h), independent of tissue lipid content and proportional to polymer sampler volume. The new PtBuMA polymer offers new opportunities for sensitive, rapid biomonitoring of PBTs and possibly also less stable neutral hydrophobic compounds in biota and food.
    View less >
    Journal Title
    Environmental Science & Technology Letters
    Volume
    3
    Issue
    2
    DOI
    https://doi.org/10.1021/acs.estlett.5b00333
    Subject
    Environmental engineering
    Environmental biotechnology
    Environmental management
    Pollution and contamination
    Science & Technology
    Technology
    Life Sciences & Biomedicine
    Engineering, Environmental
    Environmental Sciences
    Publication URI
    http://hdl.handle.net/10072/408930
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander