• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems

    Author(s)
    Zhang, Yiying
    Chi, Aining
    Mirjalili, Seyedali
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Jaya algorithm (JAYA) is a new metaheuristic algorithm, which has a very simple structure and only requires population size and terminal condition for optimization. Given the two features, JAYA has been widely used to solve various types of optimization problems. However, JAYA may easily get trapped in local optima for solving complex optimization problems due to its single learning strategy with little population information. To improve the global search ability of JAYA, this work proposes an enhanced Jaya algorithm (EJAYA) for global optimization. In EJAYA, the local exploitation is based on defined upper and lower local ...
    View more >
    Jaya algorithm (JAYA) is a new metaheuristic algorithm, which has a very simple structure and only requires population size and terminal condition for optimization. Given the two features, JAYA has been widely used to solve various types of optimization problems. However, JAYA may easily get trapped in local optima for solving complex optimization problems due to its single learning strategy with little population information. To improve the global search ability of JAYA, this work proposes an enhanced Jaya algorithm (EJAYA) for global optimization. In EJAYA, the local exploitation is based on defined upper and lower local attractors and global exploration is guided by historical population. Like JAYA, EJAYA does notneed any effort for fine tuning initial parameters. To check the performance of the proposed EJAYA, EJAYA is first used to solve 45 test functions extracted from the well-known CEC 2014 and CEC 2015 test suites. Then EJAYA is employed to solve seven challenging real-world engineering design optimization problems. Experimental results support the strong ability of EJAYA to escape from the local optimum for solving complex optimization problems and the effectively of the introduced improved strategies to JAYA. Note that, the source codes of the proposed EJAYA are publicly available at https://ww2.mathworks.cn/matlabcentral/fileexchange/88877-enhanced-jaya-algorithm-for-global-optimization.
    View less >
    Journal Title
    Knowledge-Based Systems
    DOI
    https://doi.org/10.1016/j.knosys.2021.107555
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Artificial intelligence
    Information systems
    Publication URI
    http://hdl.handle.net/10072/409186
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander