• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Water quality assessment of the Jinshui River (China) using multivariate statistical techniques

    Author(s)
    Bu, H
    Tan, X
    Li, S
    Zhang, Q
    Griffith University Author(s)
    Tan, Xiang
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Multivariate statistical techniques have been widely utilized to assess water quality and evaluate aquatic ecosystem health. In this study, cluster analysis, discriminant analysis, and factor analysis techniques are applied to analyze the physical and chemical variables in order to evaluate water quality of the Jinshui River, a water source area for an interbasin water transfer project of China. Cluster analysis classifies 12 sampling sites with 22 variables into three clusters reflecting the geo-setting and different pollution levels. Discriminant analysis confirms the three clusters with nine discriminant variables including ...
    View more >
    Multivariate statistical techniques have been widely utilized to assess water quality and evaluate aquatic ecosystem health. In this study, cluster analysis, discriminant analysis, and factor analysis techniques are applied to analyze the physical and chemical variables in order to evaluate water quality of the Jinshui River, a water source area for an interbasin water transfer project of China. Cluster analysis classifies 12 sampling sites with 22 variables into three clusters reflecting the geo-setting and different pollution levels. Discriminant analysis confirms the three clusters with nine discriminant variables including water temperature, total dissolved solids, dissolved oxygen, pH, ammoniacal nitrogen, nitrate nitrogen, turbidity, bicarbonate, and potassium. Factor analysis extracts five varifactors explaining 90.01% of the total variance and representing chemical component, oxide-related process, natural weathering and decomposition processes, nutrient process, and physical processes, respectively. The study demonstrates the capacity of multivariate statistical techniques for water quality assessment and pollution factors/sources identification for sustainable watershed management. © 2009 Springer-Verlag.
    View less >
    Journal Title
    Environmental Earth Sciences
    Volume
    60
    Issue
    8
    DOI
    https://doi.org/10.1007/s12665-009-0297-9
    Publication URI
    http://hdl.handle.net/10072/409322
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander