• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Self-checking deep neural networks in deployment

    View/Open
    Dong516760-Accepted.pdf (5.550Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Xiao, Y
    Beschastnikh, I
    Rosenblum, DS
    Sun, C
    Elbaum, S
    Lin, Y
    Dong, JS
    Griffith University Author(s)
    Dong, Jin-Song
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    The widespread adoption of Deep Neural Networks (DNNs) in important domains raises questions about the trustworthiness of DNN outputs. Even a highly accurate DNN will make mistakes some of the time, and in settings like self-driving vehicles these mistakes must be quickly detected and properly dealt with in deployment. Just as our community has developed effective techniques and mechanisms to monitor and check programmed components, we believe it is now necessary to do the same for DNNs. In this paper we present DNN self-checking as a process by which internal DNN layer features are used to check DNN predictions. We detail ...
    View more >
    The widespread adoption of Deep Neural Networks (DNNs) in important domains raises questions about the trustworthiness of DNN outputs. Even a highly accurate DNN will make mistakes some of the time, and in settings like self-driving vehicles these mistakes must be quickly detected and properly dealt with in deployment. Just as our community has developed effective techniques and mechanisms to monitor and check programmed components, we believe it is now necessary to do the same for DNNs. In this paper we present DNN self-checking as a process by which internal DNN layer features are used to check DNN predictions. We detail SelfChecker, a self-checking system that monitors DNN outputs and triggers an alarm if the internal layer features of the model are inconsistent with the final prediction. SelfChecker also provides advice in the form of an alternative prediction. We evaluated SelfChecker on four popular image datasets and three DNN models and found that SelfChecker triggers correct alarms on 60.56% of wrong DNN predictions, and false alarms on 2.04% of correct DNN predictions. This is a substantial improvement over prior work (SelfOracle, Dissector, and ConfidNet). In experiments with self-driving car scenarios, SelfChecker triggers more correct alarms than SelfOracle for two DNN models (DAVE-2 and Chauffeur) with comparable false alarms. Our implementation is available as open source.
    View less >
    Conference Title
    2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)
    DOI
    https://doi.org/10.1109/ICSE43902.2021.00044
    Copyright Statement
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Software engineering
    Publication URI
    http://hdl.handle.net/10072/409423
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander