HSV-1 enhances the energy metabolism of human umbilical cord mesenchymal stem cells to promote virus infection
Author(s)
Zhuo, Cuiqin
Zheng, Danlin
He, Zhe
Jin, Ju
Ren, Zhe
Jin, Fujun
Wang, Yifei
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
Aim: To explore the underlying influence of HSV type-1 (HSV-1) infection on the energy metabolism of human umbilical cord-derived mesenchymal stem cells (UCMSCs). Methods: UCMSCs (derived from different donors) were isolated from umbilical cord tissue, cultured and infected with HSV-1. Various virology and biochemical assays were used to assess cell viability and function, such as plaque formation assay and mitochondrial mass assay. Results: HSV-1 infection sharply activated mitochondrial biogenesis, increased glucose consumption, oxidative phosphorylation and glycolysis of UCMSCs. Treatment with rotenone (a metabolism ...
View more >Aim: To explore the underlying influence of HSV type-1 (HSV-1) infection on the energy metabolism of human umbilical cord-derived mesenchymal stem cells (UCMSCs). Methods: UCMSCs (derived from different donors) were isolated from umbilical cord tissue, cultured and infected with HSV-1. Various virology and biochemical assays were used to assess cell viability and function, such as plaque formation assay and mitochondrial mass assay. Results: HSV-1 infection sharply activated mitochondrial biogenesis, increased glucose consumption, oxidative phosphorylation and glycolysis of UCMSCs. Treatment with rotenone (a metabolism antagonist) and iodoacetic acid significantly blocked the proliferation of HSV-1 in UCMSCs. Conclusion: This study demonstrates, for the first time, that HSV-1 infection affects the energy metabolism process of UCMSCs. Treatment with the appropriate metabolism antagonists might improve the safety and efficacy of clinical stem cell therapies.
View less >
View more >Aim: To explore the underlying influence of HSV type-1 (HSV-1) infection on the energy metabolism of human umbilical cord-derived mesenchymal stem cells (UCMSCs). Methods: UCMSCs (derived from different donors) were isolated from umbilical cord tissue, cultured and infected with HSV-1. Various virology and biochemical assays were used to assess cell viability and function, such as plaque formation assay and mitochondrial mass assay. Results: HSV-1 infection sharply activated mitochondrial biogenesis, increased glucose consumption, oxidative phosphorylation and glycolysis of UCMSCs. Treatment with rotenone (a metabolism antagonist) and iodoacetic acid significantly blocked the proliferation of HSV-1 in UCMSCs. Conclusion: This study demonstrates, for the first time, that HSV-1 infection affects the energy metabolism process of UCMSCs. Treatment with the appropriate metabolism antagonists might improve the safety and efficacy of clinical stem cell therapies.
View less >
Journal Title
Future Virology
Volume
12
Issue
7
Subject
Microbiology
Medical microbiology
Science & Technology
Life Sciences & Biomedicine
Virology
glycolysis
HSV