• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Self-inhibitory peptides targeting the Neisseria gonorrhoeae MtrCDE efflux pump increase antibiotic susceptibility.

    View/Open
    Evert517415-Published.pdf (3.374Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Evert, Benjamin J
    Slesarenko, Valentin A
    Punnasseril, Jilsy MJ
    Taha
    Zhan, Jian
    Zhou, Yaoqi
    Semchenko, Evgeny A
    Seib, Kate L
    Griffith University Author(s)
    Seib, Kate
    Zhou, Yaoqi
    Semchenko, Evgeny
    Evert, Ben J.
    Slesarenko, Valentin
    Punnasseril, Jilsy
    Taha, .
    Zhan, Jian
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Neisseria gonorrhoeae is an increasing public health threat due to rapidly rising incidence and antibiotic resistance. There are an estimated 106 million cases per year worldwide, there is no vaccine available to prevent infection, and N. gonorrhoeae strains have emerged that are resistant to all antibiotics routinely used to treat the infection. In many strains, antibiotic resistance is mediated by overexpression of the MtrCDE efflux pump, which enables the bacteria to transport toxic antibiotics out of the cell. Genetic mutations that inactivate MtrCDE have previously been shown to render resistant strains susceptible to ...
    View more >
    Neisseria gonorrhoeae is an increasing public health threat due to rapidly rising incidence and antibiotic resistance. There are an estimated 106 million cases per year worldwide, there is no vaccine available to prevent infection, and N. gonorrhoeae strains have emerged that are resistant to all antibiotics routinely used to treat the infection. In many strains, antibiotic resistance is mediated by overexpression of the MtrCDE efflux pump, which enables the bacteria to transport toxic antibiotics out of the cell. Genetic mutations that inactivate MtrCDE have previously been shown to render resistant strains susceptible to certain antibiotics. Here we have shown that peptides rationally-designed to target and disrupt the activity of each of the three protein components of MtrCDE were able to increase the susceptibility of N. gonorrhoeae strains to antibiotics, in a dose-dependent manner and with no toxicity to human cells. Co-treatment of bacteria with subinhibitory concentrations of peptide led to 2-64 fold increases in the susceptibility to erythromycin, azithromycin, ciprofloxacin and/or ceftriaxone in N. gonorrhoeae strains FA1090, WHO K, WHO P and WHO X. The co-treatment experiments with peptides P-MtrC1 and P-MtrE1 resulted in increased susceptibility to azithromycin, ciprofloxacin and ceftriaxone in WHO P and WHO X that was of the same magnitude seen in MtrCDE mutants. P-MtrE1 was able to change the azithromycin resistance profile of WHO P from resistant to susceptible. Data presented here demonstrate that these peptides could be developed for use as a dual treatment with existing antibiotics to treat multidrug-resistant gonococcal infections.
    View less >
    Journal Title
    Antimicrobial Agents and Chemotherapy
    DOI
    https://doi.org/10.1128/AAC.01542-21
    Copyright Statement
    © 2021 Evert et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Microbiology
    Medical microbiology
    Pharmacology and pharmaceutical sciences
    Publication URI
    http://hdl.handle.net/10072/409527
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander