• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Regression Model for the Specific Contact Resistance of SiC Ohmic Contacts

    Author(s)
    Nicholls, Jordan R
    Dimitrijev, Sima
    Griffith University Author(s)
    Dimitrijev, Sima
    Nicholls, Jordan R.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    The number of variables involved in the formation of Ohmic contacts to SiC is large, and their relationships to the final contact resistance are often unclear. As such, trial-and-error methods are typically employed to develop or improve SiC contacts. In pursuit of a better alternative, we developed and tested several regression models to predict the specific contact resistance of Ni, Ti, and Al based contacts on both n- and p-type SiC. Literature data was used to train linear regression, Gaussian process regression, and neural network (NN) ensemble models; of these, the NN ensemble was the most effective at predicting contact ...
    View more >
    The number of variables involved in the formation of Ohmic contacts to SiC is large, and their relationships to the final contact resistance are often unclear. As such, trial-and-error methods are typically employed to develop or improve SiC contacts. In pursuit of a better alternative, we developed and tested several regression models to predict the specific contact resistance of Ni, Ti, and Al based contacts on both n- and p-type SiC. Literature data was used to train linear regression, Gaussian process regression, and neural network (NN) ensemble models; of these, the NN ensemble was the most effective at predicting contact resistances. We then applied the model to optimize the annealing schedule for Ni contacts to n-type 4H-SiC, and Ti/Al contacts to p-type 4H-SiC. Finally, we use the model to generate optimal simultaneous contact recipes.
    View less >
    Journal Title
    IEEE Transactions on Semiconductor Manufacturing
    Volume
    34
    Issue
    4
    DOI
    https://doi.org/10.1109/tsm.2021.3108460
    Subject
    Electrical engineering
    Publication URI
    http://hdl.handle.net/10072/409673
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander