• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Experimental study on durability of basalt fiber concrete after elevated temperature

    View/Open
    Doh518906-Accepted.pdf (2.022Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Lu, Limin
    Han, Fei
    Wu, Shaohua
    Qin, Yuwen
    Yuan, Guanglin
    Doh, Jeung‐Hwan
    Griffith University Author(s)
    Doh, Jeung-Hwan
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    The durability of concrete material after exposure to elevated temperatures is important for the serviceability prediction of concrete structures in a fire disaster scenario. Existing researches show that an appropriate amount of basalt fiber can significantly improve the splitting tensile strength and chloride penetration resistance of concrete. However, the mechanical properties of basalt fiber concrete after elevated temperatures and its durability properties are still not clear. In this paper, the mechanical properties, carbonization law, and chloride ion penetration law of ordinary concrete and basalt fiber concrete ...
    View more >
    The durability of concrete material after exposure to elevated temperatures is important for the serviceability prediction of concrete structures in a fire disaster scenario. Existing researches show that an appropriate amount of basalt fiber can significantly improve the splitting tensile strength and chloride penetration resistance of concrete. However, the mechanical properties of basalt fiber concrete after elevated temperatures and its durability properties are still not clear. In this paper, the mechanical properties, carbonization law, and chloride ion penetration law of ordinary concrete and basalt fiber concrete under high temperatures are studied. The concept of a burnt layer for concrete exposed to elevated temperatures is proposed, and the thickness of this burnt layer for concrete under different temperatures was measured. The results show that the addition of basalt fiber can inhibit the carbonization of concrete at elevated temperatures, diminish the thickness of the burnt layer, and significantly improve the chloride penetration resistance of concrete.
    View less >
    Journal Title
    Structural Concrete
    DOI
    https://doi.org/10.1002/suco.202000746
    Copyright Statement
    © 2021. International Federation for Structural Concrete. This is the peer reviewed version of the following article: Experimental study on durability of basalt fiber concrete after elevated temperature, Structural Concrete, 2021, which has been published in final form at https://doi.org/10.1002/suco.202000746. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Civil engineering
    Publication URI
    http://hdl.handle.net/10072/409725
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander