• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Combining university student self-regulated learning indicators and engagement with online learning events to predict academic performance

    Author(s)
    Pardo, A
    Han, F
    Ellis, RA
    Griffith University Author(s)
    Han, Feifei D.
    Ellis, Robert
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Self-regulated learning theories are used to understand the reasons for different levels of university student academic performance. Similarly, learning analytics research proposes the combination of detailed data traces derived from technology-mediated tasks with a variety of algorithms to predict student academic performance. The former approach is designed to provide meaningful pedagogical guidance, while the latter is designed to identify event patterns and relations that can be translated into actionable remediation. The benefits of both approaches have motivated this study to investigate if a combination of the self-report ...
    View more >
    Self-regulated learning theories are used to understand the reasons for different levels of university student academic performance. Similarly, learning analytics research proposes the combination of detailed data traces derived from technology-mediated tasks with a variety of algorithms to predict student academic performance. The former approach is designed to provide meaningful pedagogical guidance, while the latter is designed to identify event patterns and relations that can be translated into actionable remediation. The benefits of both approaches have motivated this study to investigate if a combination of the self-report data and data arising from an observation of the engagement of students with online learning events offers a deeper understanding and explanation of why some students achieve relatively higher levels of academic performance. In this paper we explore how to combine data about self-regulated learning skills with observable measures of online activity in a blended learning course to increase predictive capabilities of student academic performance for the purposes of informing teaching and task design. A case study in a course with 145 students showed that the variation of the students' final score for their course is better explained when factors from both approaches are considered. The results point to the potential of adopting a combined use of self-report and observed data to gain a more comprehensive understanding of successful university student learning.
    View less >
    Journal Title
    IEEE Transactions on Learning Technologies
    Volume
    10
    Issue
    1
    DOI
    https://doi.org/10.1109/TLT.2016.2639508
    Subject
    Communications engineering
    Specialist studies in education
    Publication URI
    http://hdl.handle.net/10072/409738
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander